期刊文献+
共找到190,713篇文章
< 1 2 250 >
每页显示 20 50 100
INTERFACIAL TENSIONS OF SOLID COPPER/LIQUID LEAD AND SOLID COPPER/LIQUID BISMUTH
1
作者 刘友鹏 陶为民 吴申庆 《Journal of Southeast University(English Edition)》 EI CAS 1991年第1期37-43,共7页
The solid-liquid interfacial tensions of Cu(solid)-Pb(liquid)andCu(solid)-Bi(liquid)binary systems have been determined by the dihedral angle method.The results show that at 850℃ the interfacial tensions are 368±... The solid-liquid interfacial tensions of Cu(solid)-Pb(liquid)andCu(solid)-Bi(liquid)binary systems have been determined by the dihedral angle method.The results show that at 850℃ the interfacial tensions are 368±55mN/m for Cu-Pb sys-tem and 336±35mN/m for Cu-Bi systa,respectively,the error ranges of which aremore narrow than those found in some papers published abroad.In addition,there is nodetective segregation of other solute atoms or compounds in the vicinity of the tip of cop-per grain boundary where dihedral angles formed. 展开更多
关键词 interfacial tension SOLIDS liquid copper LEAD bismuth/dihedral
在线阅读 下载PDF
Role of copper in central nervous system physiology and pathology 被引量:2
2
作者 Martina Locatelli Cinthia Farina 《Neural Regeneration Research》 SCIE CAS 2025年第4期1058-1068,共11页
Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central ne... Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis. 展开更多
关键词 ASTROCYTES central nervous system copper CUPRIZONE multiple sclerosis MYELIN neurodegenerative disorders
暂未订购
Role of copper chelating agents: between old applications and new perspectives in neuroscience 被引量:1
3
作者 Rosalba Leuci Leonardo Brunetti +4 位作者 Vincenzo Tufarelli Marco Cerini Marco Paparella Nikola Puvača Luca Piemontese 《Neural Regeneration Research》 SCIE CAS 2025年第3期751-762,共12页
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays a... The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions. 展开更多
关键词 agriculture Alzheimer's disease CHELATORS copper feed supplements MULTI-TARGET
暂未订购
Investigation of the formation processes of CO_(2) hydrate films on the interface of liquid carbon dioxide with humic acids solutions 被引量:1
4
作者 Aleksey K.Sagidullin Sergey S.Skiba +1 位作者 Tatyana P.Adamova Andrey Y.Manakov 《Chinese Journal of Chemical Engineering》 2025年第3期53-61,共9页
Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the inte... Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle. 展开更多
关键词 HYDRATES Carbon dioxide Humic acids solutions Reaction kinetics liquid liquid reaction Film growth
在线阅读 下载PDF
Liquid metal composites:Recent advances and applications 被引量:1
5
作者 Chunghyeon Choi Liyang Liu Byungil Hwang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1008-1024,共17页
Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based ... Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based LMs exhibit minimal cytotoxicity,low viscosity,high thermal and electrical conductivities,and excellent wettability.Therefore,Ga-based LM composites(LMCs)have emerged as a recent research focus.Recent advancements have focused on novel fabrication techniques and applications spanning energy storage,flexible electronics,and biomedical devices.Particularly noteworthy are the developments in wearable sensors and electronic skins,which hold promise for healthcare monitoring and human-machine interfaces.Despite their potential,challenges,such as oxidative susceptibil-ity and biocompatibility,remain.Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains.This review provides a concise overview of the recent trends in LMC research,highlights their transformative impacts,and outlines key directions for future investigation and development. 展开更多
关键词 COMPOSITES liquid metal POLYMER APPLICATIONS ALLOYS
在线阅读 下载PDF
Copper homeostasis and neurodegenerative diseases
6
作者 Yuanyuan Wang Daidi Li +2 位作者 Kaifei Xu Guoqing Wang Feng Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3124-3143,共20页
Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is... Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis disease copper homeostasis copper toxicity Huntington's disease Menkes'disease multiple sclerosis neurodegenerative disease Parkinson's disease Wilson's disease
暂未订购
Distribution and Fate of Arsenic in Copper Mining,Beneficiation and Smelting in China
7
作者 HAN Wei WANG Yujing NIE Jinglei 《有色金属(中英文)》 北大核心 2025年第10期1844-1853,共10页
Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across... Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across the copper mining,beneficiation,and smelting processes using a life-cycle approach,providing important insights for arsenic pollution prevention and the resource utilization of arsenic-bearing solid waste.The results show that the amount of As in waste rock,tailing and concentrate are 53483 t,86632 t,76162 t,respectively.After smelting treatment,the amount of arsenic in different types of solid waste,wastewater,waste gas and products are 76128 t,1 t,31 t and 2 t,respectively,and the proportion in arsenic sulfide slag is the highest(55%).The amount of emission to the environment is 32 t,accounting for only 0.04%of total amount.In the future,key considerations are to improve the resource utilization rate of arsenic-containing solid waste(tailing,smelting slag),especially arsenic sulfide slag,and to digest its environmental risk. 展开更多
关键词 arsenic contamination copper mining copper beneficiation copper smelting material flow
在线阅读 下载PDF
Advances in electrolytic copper foils:fabrication,microstructure,and mechanical properties 被引量:1
8
作者 Long-Long Lu Hai-Tao Liu +8 位作者 Zhao-Dong Wang Qiong-Qiong Lu Yan-Jun Zhou Fei Zhou Yan-Min Zhang Wei-Wei Lu Bin Yang Qian-Qian Zhu Ke-Xing Song 《Rare Metals》 2025年第2期757-792,共36页
Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of L... Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented. 展开更多
关键词 Electrolytic copper foil Fabrication processes ELECTRODEPOSITION MICROSTRUCTURE Mechanical properties
原文传递
Axial emission characteristics of an ionic liquid electrospray thruster with a circular emitter 被引量:1
9
作者 Cheng YANG Jiawei LUO +1 位作者 Xiangbei WU Yan SHEN 《Chinese Journal of Aeronautics》 2025年第1期297-305,共9页
Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter IL... Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary. 展开更多
关键词 ELECTROSPRAY Ionic liquid thruster Self-organize EMITTER Taylor cone
原文传递
A study on the impact of liquid metal droplets onto metal and elastomer substrates 被引量:1
10
作者 Zilu He Rui Xiao Shaoxing Qu 《Acta Mechanica Sinica》 2025年第4期1-10,共10页
The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid met... The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid metal droplets,we analyze the influence of different initial conditions and substrate materials on droplet spreading,impact force,and elastic wave propagation on the substrate.It is found that an agglomeration phenomenon can be observed when the liquid metal droplets impact onto a soft elastomer substrate,which is not observed as a metal substrate is employed.Regardless of the substrate material,when surface tension dominates the diffusion,the diffusion factor of droplets is proportional to We(Weber number).It is also observed that the self-similarity of liquid metal droplet impact force on copper substrates,which is not the case for soft elastomer substrates.Using smoothed particle hydrodynamics(SPH)simulations,the time-domain curve and peak point of the droplet can be well predicted for a metal substrate.Furthermore,by recording the acceleration signal on the substrates,we further obtain the energy radiated by elastic waves,providing an explanation for energy conversion during the impact process with varying parameters.The results provide an additional understanding on the complex impact behaviors of liquid metal droplets. 展开更多
关键词 liquid metal Mechanics of soft matter IMPACT
原文传递
Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium 被引量:1
11
作者 Lei Guo Huayi Yin +5 位作者 Wenmiao Li Shiyu Wang Kaifa Du Hao Shi Xu Wang Dihua Wang 《Journal of Magnesium and Alloys》 2025年第4期1579-1591,共13页
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car... Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg). 展开更多
关键词 Molten-salt electrolysis Inert anode liquid metal electrodes SODIUM MAGNESIUM
在线阅读 下载PDF
Performance of stabilized copper mine tailings with freeze-thaw and wet-dry seasonal cycles 被引量:1
12
作者 Uddav Ghimire Tejo V.Bheemasetti Hee-Jeong Kim 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1418-1428,共11页
Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycli... Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions. 展开更多
关键词 copper mine tailings(MT) Stabilization Seasonal cycles Cold and arid region
在线阅读 下载PDF
Bioinspired Ultrasensitive Flexible Strain Sensors for Real‑Time Wireless Detection of Liquid Leakage
13
作者 Weilong Zhou Yu Du +6 位作者 Yingying Chen Congyuan Zhang Xiaowei Ning Heng Xie Ting Wu Jinlian Hu Jinping Qu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期310-327,共18页
Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic ... Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) hasbeen developed using a combination of micro-extrusion compression molding andsurface modification for real-time wireless detection of liquid leakage. The TCGSutilizes the synergistic effects of Archimedean spiral crack arrays and micropores,which are inspired by the remarkable sensory capabilities of scorpions. This designachieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability bywithstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability indetecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositionswhile issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenariosin everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effectivesolution for the early wireless detection of liquid leakage. 展开更多
关键词 Thermoplastic polyurethane BIOINSPIRED Cracks liquid leakage Flexible strain sensor
在线阅读 下载PDF
CMOS direct conversion X-ray detector coupled with fluorinated liquid 被引量:1
14
作者 Shi-Hua Liu Chao-Song Gao +5 位作者 Xin Zhang Xiang-Ming Sun Meng Wu Zhi-Hui Han Tong Wan Yong-Shuai Ge 《Nuclear Science and Techniques》 2025年第1期59-68,共10页
X-ray detectors show potential applications in medical imaging,materials science,and nuclear energy.To achieve high detection efficiency and spatial resolution,many conventional semiconductor materials,such as amorpho... X-ray detectors show potential applications in medical imaging,materials science,and nuclear energy.To achieve high detection efficiency and spatial resolution,many conventional semiconductor materials,such as amorphous selenium,cadmium telluride zinc,and perovskites,have been utilized in direct conversion X-ray detectors.However,these semiconductor materials are susceptible to temperature-induced performance degradation,crystallization,delamination,uneven lattice growth,radiation damage,and high dark current.This study explores a new approach by coupling an FC40 electronic fluorinated liquid with a specialized high-resolution and high-readout-speed complementary metal-oxide-semiconductor(CMOS)pixel array,specifically the Topmetal II−chip,to fabricate a direct conversion X-ray detector.The fluorinated liquid FC40(molecular formula:C_(21)F_(48)N_(2))is an electronic medium that is minimally affected by temperature and displays no issues with uniform conductivity.It exhibits a low dark current and minimal radiation damage and enables customizable thickness in X-ray absorption.This addresses the limitations inherent in conventional semiconductor-based detectors.In this study,simple X-ray detector imaging tests were conducted,demonstrating the excellent coupling capability between FC40 electronic fluorinated liquid and CMOS chips by the X-ray detector.A spatial resolution of 4.0 lp/mm was measured using a striped line par card,and a relatively clear image of a cockroach was displayed in the digital radiography imaging results.Preliminary test results indicated the feasibility of fabricating an X-ray detector by combining FC40 electronic fluorinated liquid and CMOS chips.Owing to the absence of issues related to chip-material coupling,a high spatial resolution could be achieved by reducing the chip pixel size.This method presents a new avenue for studies on novel liquid-based direct conversion X-ray detectors. 展开更多
关键词 FC40 electronic fluorinated liquid CMOS pixel chip X-ray detector Spatial resolution
在线阅读 下载PDF
Dual-ligand-modified copper nanoclusters:Synthesis and application in ornidazole detection
15
作者 TIAN Rui LI Duo +4 位作者 REN Yuan CHAI Jiamin SUN Xuehua LI Haoyu ZHANG Yuecheng 《无机化学学报》 北大核心 2025年第6期1245-1255,共11页
Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching a... Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching and dynamic quenching effects of ornidazole(ONZ)on BSA-Gly CuNCs,a simple and sensitive detection method for ONZ was successfully developed.The experimental results demonstrate that the addition of the small molecule Gly can more effectively protect CuNCs,and thus enhance its fluorescence intensity and stability.The proposed assay allowed for the detection of ONZ in a linear range of 0.28 to 52.60μmol·L^(-1)and a detection limit of 0.069μmol·L^(-1).Compared with the single-ligand-modified CuNCs,dual-ligand-modified BSA-Gly CuNCs had higher fluorescence intensity,stability,and sensing ability and were successfully applied to evaluate ONZ in actual ONZ tablets. 展开更多
关键词 copper nanocluster ORNIDAZOLE dual-ligand-modified fluorescence detection
在线阅读 下载PDF
Investigation on coal damage and fracture extension law of liquid nitrogen injection pre-cooling and fracturing under true triaxial stress 被引量:1
16
作者 Botao Li Haifei Lin +7 位作者 Jianping Wei Hongtu Zhang Shugang Li Zongyong Wei Lei Qin Pei Wang Rongwei Luo Zeran Liu 《International Journal of Mining Science and Technology》 2025年第2期213-229,共17页
To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturin... To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification. 展开更多
关键词 liquid nitrogen fracturing Thermal–hydraulic-mechanical-damage coupling Heterogeneous coal True triaxial stress Fracture morphology
在线阅读 下载PDF
Smart Cellulose‑Based Janus Fabrics with Switchable Liquid Transportation for Personal Moisture and Thermal Management
17
作者 Jianfeng Xi Yanling Lou +5 位作者 Liucheng Meng Chao Deng Youlu Chu Zhaoyang Xu Huining Xiao Weibing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期333-347,共15页
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana... The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations. 展开更多
关键词 Directional water transport Cotton fabric Anti-gravity directional liquid transportation Janus wettability
在线阅读 下载PDF
Chitosan/silica-coated copper nanoclusters:Synthesis and application in cefixime detection
18
作者 TIAN Rui CHAI Jiamin +4 位作者 CHEN Junyu REN Yuan SUN Xuehua LI Haoyu ZHANG Yuecheng 《无机化学学报》 北大核心 2025年第9期1903-1915,共13页
Herein,copper nanoclusters(Cu NCs)were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand,with Cu(NO_(3))_(2)as copper source.Subse-quen... Herein,copper nanoclusters(Cu NCs)were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand,with Cu(NO_(3))_(2)as copper source.Subse-quently,composite fluorescent nanoparticles,chitosan-functionalized silica nanoparticles(CSNPs)-coated Cu NCs(Cu NCs/CSNPs),were synthesized via a reverse microemulsion method.Compared with Cu NCs,the composite Cu NCs/CSNPs exhibited an increased quantum yield and enhanced fluorescence sensing performance.Based on the composite Cu NCs/CSNPs,a fluorescence method for the detection of cefixime fluorescence quenching was estab-lished.The technique was simple,sensitive,and selective for detecting cefixime.The fluorescence quenching effi-ciency of Cu NCs/CSNPs was linearly related to the concentration of cefixime in the range of 3.98-38.5µmol·L^(-1)(1.81-17.46 mg·L^(-1)),with a limit of detection of 0.0455µmol·L^(-1)(20.6µg·L^(-1)). 展开更多
关键词 copper nanoclusters fluorescence detection CEFIXIME
在线阅读 下载PDF
High-efficiency RGB achromatic liquid crystal diffractive optical elements 被引量:1
19
作者 Yuqiang Ding Xiaojin Huang +2 位作者 Yongziyan Ma Yan Li Shin-Tson Wu 《Opto-Electronic Advances》 2025年第3期4-15,共12页
Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However... Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs. 展开更多
关键词 achromatic diffractive optical elements Pacharatnam-Berry phase optical elements liquid crystal planar optics near-eye displays
在线阅读 下载PDF
Nanoflower Copper Sulfide as Cathode Materials for Magnesium Ion Batteries
20
作者 He Yuantai Wu Liang +3 位作者 Shi Yongan Zhong Zhiyong Yao Wenhui Pan Fusheng 《稀有金属材料与工程》 北大核心 2025年第3期545-553,共9页
CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesi... CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesis process.Results show that CuS-C50 has the complete nanoflower structure.In aluminum chloride-pentamethylcydopentodiene/tetrahydrofuran(APC/THF)electrolyte,the CuS-C50 exhibits a high specific capacity of 331.19 mAh/g when the current density is 50 mA/g and still keeps a specific capacity of 136.92 mAh/g over 50 cycles when the current density is 200 mA/g.Results of morphology characterizations indicate that the complete nanoflower structure can provide more active sites and reduce the barriers for Mg^(2+)movement,eventually improving the charge and discharge performance of the CuS cathode materials for magnesium ion batteries. 展开更多
关键词 copper sulfide nanoflower magnesium ion batteries CTAB hydrothermal synthesis
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部