We report the first attempt to model the contacts of an ionic polymer metal composite(IPMC) based tactile sensor. The tactile sensor comprises an IPMC actuator, an IPMC sensor and the target to be detected. The syst...We report the first attempt to model the contacts of an ionic polymer metal composite(IPMC) based tactile sensor. The tactile sensor comprises an IPMC actuator, an IPMC sensor and the target to be detected. The system makes use of multiple contacts to work: the actuator comes into contact with the sensor and pushes the movement of sensor; the contact between the sensor and the object detects the existence and the stiffness of the target. We integrate modeling of various physical processes involved in IPMC devices to form a simulation scheme. An iteration and optimization strategy is also described to correlate the experimental and simulation results of an IPMC bending actuator to identify the two key parameters used in electromechanical transduction. Modeling the multiple contacts will aid the design and optimization of such IPMC based soft robotics.展开更多
We propose a novel non-contact rotational sensor based on a fiber Bragg grating(FBG) packaged in a core of a magnetic head, which converts the introduced strain from the circular magnetic railings ruler into the rotat...We propose a novel non-contact rotational sensor based on a fiber Bragg grating(FBG) packaged in a core of a magnetic head, which converts the introduced strain from the circular magnetic railings ruler into the rotational information. A mathematical model is built for processing the data obtained by an interrogator, and the accuracy and resolution of the measurements are analyzed by altering the radius and period of the circular magnetic railings ruler, as well as the dimension of the sensor. The experimental results show that it is in good accordance with the theoretical analysis on rotational angle, and the fitting results indicate that the results obtained from the rotational sensor match very well with the real rotational velocity with a linearity of 0.998 and a standard error of about 0.01.展开更多
This paper presents the studying results of the sodium ion sensor device based on the SnO_2/ITO glass structure in the detection of rinsing solution for contact lenses.The selective membrane contains poly (vinyl chlor...This paper presents the studying results of the sodium ion sensor device based on the SnO_2/ITO glass structure in the detection of rinsing solution for contact lenses.The selective membrane contains poly (vinyl chloride) (PVC),bis (2-ethylhexyl) sebacate (DOS),(12-crown-4) methylmalonate (B12C4),and sodium tetrakis (4-fluoropbenyl) borate dehydrate (NaTFBD). The final weight ratios are PVC:DOS:B12C4:NaTFBD=33:66:2:2.In this condition,the sensor has performances with linear sensitivity,short response time,good repeatability and selectivity.The sensor was used to measure the rinsing solution for the contact lenses.Because the experimental results show close to the accurate value for four commercial products,this sensor can preliminary be used in detecting the rinsing solution for the contact lenses.Using this structure and sodium-sensing membrane to construct the sodium sensor is proven successfully in this application.展开更多
The passive dynamic walking is a new concept of biped walking. Researchers have been working on this area with both theoretical analysis and experimental analysis ever since McGeer. This paper presents our compass-lik...The passive dynamic walking is a new concept of biped walking. Researchers have been working on this area with both theoretical analysis and experimental analysis ever since McGeer. This paper presents our compass-like pas- sive walking model with a new set of testing system. Two gyroscopes are used for measuring the angles of two legs, and ten FlexiForce sensors are used for measuring the con- tact forces on the feet. We got the experimental data on the passive walking process with the validated testing system. A great emphasis was put on the contact process between the feet and the slope. The contact process of the stance leg was divided into four sections, and differences between the real testing contact process and the classic analytical contact process with no bouncing and slipping were summarized展开更多
In this paper, high-quality nanocrystalline SnO_2 thin film was grown on bare Si(100) substrates by a sol–gel method. A metal–semiconductor–metal gas sensor was fabricated using nanocrystalline SnO_2 thin film and ...In this paper, high-quality nanocrystalline SnO_2 thin film was grown on bare Si(100) substrates by a sol–gel method. A metal–semiconductor–metal gas sensor was fabricated using nanocrystalline SnO_2 thin film and palladium(Pd)metal. The contact between Pd and nanocrystalline SnO_2 film is tunable. Ohmic barrier contact was formed without addition of glycerin, while Schottky contact formed by adding glycerin. Two kinds of sensor devices with Schottky contact were fabricated(Device 1: 8 h, 500 °C; Device 2: 10 h, 400 °C). The room temperature sensitivity for hydrogen(H_2) was120 and 95 % in 1000 ppm H_2, and the low power consumption was 65 and 86 l W for two devices, respectively. At higher temperature of 125 °C, the sensitivity was increased to 195 and 160 %, respectively. The sensing measurements were repeatable at various temperatures(room temperature, 75, 125 °C) for over 50 min. It was found that Device 1 has better sensitivity than Device 2 due to its better crystallinity. These findings indicate that the sensors fabricated on bare Si by adding glycerin to the sol solution have strong ability to detect H_2 gas under different concentrations and temperatures.展开更多
Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement,motion detection and voice recognition.In recent years,many significant improvements had been made to ...Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement,motion detection and voice recognition.In recent years,many significant improvements had been made to enhance the sensor’s performance including sensitivity,flexibility and repeatability.However,it is still extremely complicated and difficult to prepare a patterned sensor directly on a flexible substrate.Herein,inspired by typography,a lowcost,environmentally friendly stamping method for the mass production of transparent conductive carbon nanotube(CNT)film is proposed.In this dry transfer strategy,a porous CNT block was used as both the seal and the ink;and Ecoflex film was served as an object substrate.Welldesigned CNT patterns can be easily fabricated on the polymer substrate by engraving the target pattern on the CNT seal before the stamping process.Moreover,the CNT film can be directly used to fabricate ultrathin(300μm)strain sensor.This strain sensor possesses high sensitivity with a gauge factor(GF)up to 9960 at 85%strain,high stretchability(>200%)and repeatability(>5000 cycles).It has been used to measure pulse signals and detect joint motion,suggesting promising application prospects in flexible and wearable electronic devices.展开更多
With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current me...With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current measurement technology is also emerging. This article’s design idea is based on two-dimensional reluctance sensor device built non-contact weak current detection system. The system uses the reluctance sensor HMC1002 to collect the current signal and the temperature sensor DS18B20 to compensate the temperature. The signals collected by the reluctance sensor and the temperature sensor are extremely weak. After being amplified by the amplifying circuit, the signal is conducive to subsequent detection and processing. Filter circuit can filter out interference signals to achieve the goal of improving accuracy. After the corresponding algorithm of the microcontroller will convert the signal voltage, easy to read and store, thus designing a non-contact current measurement capable of detecting weak currents and achieving higher accuracy.展开更多
This study presents an improvement of high dynamic range contact-type capacitive displacement sensor by applying planarization. The sensor is called the contact-type linear encoder-like capacitive displacement sensor ...This study presents an improvement of high dynamic range contact-type capacitive displacement sensor by applying planarization. The sensor is called the contact-type linear encoder-like capacitive displacement sensor (CLECDiS), is a nano-meter-resolution sensor with a wide dynamic range. However, height differences due to patterned electrodes may cause a variety of problems or performance degradation. In devices of two glass wafer surfaces with patterned structures assembled face-to-face and in sliding contact, the heights of the patterns crucially affect their performance and practicality, so it should be planarized for reducing the problem. A number of techniques for planarizing glass wafer surfaces with patterned chrome electrodes were evaluated and the following three were selected as adequate: lift-off, etch-back, and chemical mechanical polishing (CMP). The fabricated samples showed that CMP provided the best planarization. CMP was successfully employed to produce CLECDiS with improved signal reliability due to reduced collisions between electrodes.展开更多
针对犬类心力衰竭诊疗中呼吸频率连续监测的临床需求,开发一种混合式TOF(Time-of-Flight)传感的新型非接触式呼吸监测系统。提出单点-点阵混合式TOF传感架构,构建自适应空间监测模型以适应宠物不同姿态的监测。基于STM32嵌入式平台实现...针对犬类心力衰竭诊疗中呼吸频率连续监测的临床需求,开发一种混合式TOF(Time-of-Flight)传感的新型非接触式呼吸监测系统。提出单点-点阵混合式TOF传感架构,构建自适应空间监测模型以适应宠物不同姿态的监测。基于STM32嵌入式平台实现传感器时序协同控制与原始信号预处理,通过LabVIEW上位机开发实时呼吸波形解析算法,并光学校准测试优化点阵TOF测距参数。静态场景下对小型犬的测试表明,系统呼吸频率测量误差≤2 BPM(breaths per minute)。LabVIEW界面可实时显示呼吸波形与BPM值,验证了光学TOF传感在活体监测中的可行性。单点-点阵混合TOF系统通过光学测量优化与空间自适应策略,实现了高精度犬静态呼吸监测,为宠物医疗领域提供了小型化、低成本的生物光学测量新方案。展开更多
基金supported by the National Natural Science Foundation of China(Nos.11372239,11321062 and 11472210)
文摘We report the first attempt to model the contacts of an ionic polymer metal composite(IPMC) based tactile sensor. The tactile sensor comprises an IPMC actuator, an IPMC sensor and the target to be detected. The system makes use of multiple contacts to work: the actuator comes into contact with the sensor and pushes the movement of sensor; the contact between the sensor and the object detects the existence and the stiffness of the target. We integrate modeling of various physical processes involved in IPMC devices to form a simulation scheme. An iteration and optimization strategy is also described to correlate the experimental and simulation results of an IPMC bending actuator to identify the two key parameters used in electromechanical transduction. Modeling the multiple contacts will aid the design and optimization of such IPMC based soft robotics.
基金supported by the Program for Cheung Kong Scholars and Innovative Research Team in University(No.IRT1212)the Project Plan of Beijing Municipal Science and Technology Commission(No.Z151100003615010)the Project Plan of Beijing Municipal Education Commission for Enhancing the Innovation Capability in 2015(No.TJSHG201510772016)
文摘We propose a novel non-contact rotational sensor based on a fiber Bragg grating(FBG) packaged in a core of a magnetic head, which converts the introduced strain from the circular magnetic railings ruler into the rotational information. A mathematical model is built for processing the data obtained by an interrogator, and the accuracy and resolution of the measurements are analyzed by altering the radius and period of the circular magnetic railings ruler, as well as the dimension of the sensor. The experimental results show that it is in good accordance with the theoretical analysis on rotational angle, and the fitting results indicate that the results obtained from the rotational sensor match very well with the real rotational velocity with a linearity of 0.998 and a standard error of about 0.01.
文摘This paper presents the studying results of the sodium ion sensor device based on the SnO_2/ITO glass structure in the detection of rinsing solution for contact lenses.The selective membrane contains poly (vinyl chloride) (PVC),bis (2-ethylhexyl) sebacate (DOS),(12-crown-4) methylmalonate (B12C4),and sodium tetrakis (4-fluoropbenyl) borate dehydrate (NaTFBD). The final weight ratios are PVC:DOS:B12C4:NaTFBD=33:66:2:2.In this condition,the sensor has performances with linear sensitivity,short response time,good repeatability and selectivity.The sensor was used to measure the rinsing solution for the contact lenses.Because the experimental results show close to the accurate value for four commercial products,this sensor can preliminary be used in detecting the rinsing solution for the contact lenses.Using this structure and sodium-sensing membrane to construct the sodium sensor is proven successfully in this application.
基金supported by the National Natural Science Foundation of China(11102006)
文摘The passive dynamic walking is a new concept of biped walking. Researchers have been working on this area with both theoretical analysis and experimental analysis ever since McGeer. This paper presents our compass-like pas- sive walking model with a new set of testing system. Two gyroscopes are used for measuring the angles of two legs, and ten FlexiForce sensors are used for measuring the con- tact forces on the feet. We got the experimental data on the passive walking process with the validated testing system. A great emphasis was put on the contact process between the feet and the slope. The contact process of the stance leg was divided into four sections, and differences between the real testing contact process and the classic analytical contact process with no bouncing and slipping were summarized
基金conducted under FRGS Grant:203/PFIZIK/6711197 the support from Universiti Sains Malaysia gratefully acknowledged
文摘In this paper, high-quality nanocrystalline SnO_2 thin film was grown on bare Si(100) substrates by a sol–gel method. A metal–semiconductor–metal gas sensor was fabricated using nanocrystalline SnO_2 thin film and palladium(Pd)metal. The contact between Pd and nanocrystalline SnO_2 film is tunable. Ohmic barrier contact was formed without addition of glycerin, while Schottky contact formed by adding glycerin. Two kinds of sensor devices with Schottky contact were fabricated(Device 1: 8 h, 500 °C; Device 2: 10 h, 400 °C). The room temperature sensitivity for hydrogen(H_2) was120 and 95 % in 1000 ppm H_2, and the low power consumption was 65 and 86 l W for two devices, respectively. At higher temperature of 125 °C, the sensitivity was increased to 195 and 160 %, respectively. The sensing measurements were repeatable at various temperatures(room temperature, 75, 125 °C) for over 50 min. It was found that Device 1 has better sensitivity than Device 2 due to its better crystallinity. These findings indicate that the sensors fabricated on bare Si by adding glycerin to the sol solution have strong ability to detect H_2 gas under different concentrations and temperatures.
基金financially supported by National Natural Science Foundation of China(Grant No.51772335)Guangdong Youth Top-notch Talent Support Program(No.2015TQ01C201)the Fundamental Research Funds for the Central Universities.
文摘Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement,motion detection and voice recognition.In recent years,many significant improvements had been made to enhance the sensor’s performance including sensitivity,flexibility and repeatability.However,it is still extremely complicated and difficult to prepare a patterned sensor directly on a flexible substrate.Herein,inspired by typography,a lowcost,environmentally friendly stamping method for the mass production of transparent conductive carbon nanotube(CNT)film is proposed.In this dry transfer strategy,a porous CNT block was used as both the seal and the ink;and Ecoflex film was served as an object substrate.Welldesigned CNT patterns can be easily fabricated on the polymer substrate by engraving the target pattern on the CNT seal before the stamping process.Moreover,the CNT film can be directly used to fabricate ultrathin(300μm)strain sensor.This strain sensor possesses high sensitivity with a gauge factor(GF)up to 9960 at 85%strain,high stretchability(>200%)and repeatability(>5000 cycles).It has been used to measure pulse signals and detect joint motion,suggesting promising application prospects in flexible and wearable electronic devices.
文摘With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current measurement technology is also emerging. This article’s design idea is based on two-dimensional reluctance sensor device built non-contact weak current detection system. The system uses the reluctance sensor HMC1002 to collect the current signal and the temperature sensor DS18B20 to compensate the temperature. The signals collected by the reluctance sensor and the temperature sensor are extremely weak. After being amplified by the amplifying circuit, the signal is conducive to subsequent detection and processing. Filter circuit can filter out interference signals to achieve the goal of improving accuracy. After the corresponding algorithm of the microcontroller will convert the signal voltage, easy to read and store, thus designing a non-contact current measurement capable of detecting weak currents and achieving higher accuracy.
文摘This study presents an improvement of high dynamic range contact-type capacitive displacement sensor by applying planarization. The sensor is called the contact-type linear encoder-like capacitive displacement sensor (CLECDiS), is a nano-meter-resolution sensor with a wide dynamic range. However, height differences due to patterned electrodes may cause a variety of problems or performance degradation. In devices of two glass wafer surfaces with patterned structures assembled face-to-face and in sliding contact, the heights of the patterns crucially affect their performance and practicality, so it should be planarized for reducing the problem. A number of techniques for planarizing glass wafer surfaces with patterned chrome electrodes were evaluated and the following three were selected as adequate: lift-off, etch-back, and chemical mechanical polishing (CMP). The fabricated samples showed that CMP provided the best planarization. CMP was successfully employed to produce CLECDiS with improved signal reliability due to reduced collisions between electrodes.
文摘针对犬类心力衰竭诊疗中呼吸频率连续监测的临床需求,开发一种混合式TOF(Time-of-Flight)传感的新型非接触式呼吸监测系统。提出单点-点阵混合式TOF传感架构,构建自适应空间监测模型以适应宠物不同姿态的监测。基于STM32嵌入式平台实现传感器时序协同控制与原始信号预处理,通过LabVIEW上位机开发实时呼吸波形解析算法,并光学校准测试优化点阵TOF测距参数。静态场景下对小型犬的测试表明,系统呼吸频率测量误差≤2 BPM(breaths per minute)。LabVIEW界面可实时显示呼吸波形与BPM值,验证了光学TOF传感在活体监测中的可行性。单点-点阵混合TOF系统通过光学测量优化与空间自适应策略,实现了高精度犬静态呼吸监测,为宠物医疗领域提供了小型化、低成本的生物光学测量新方案。