期刊文献+
共找到256,727篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient rock joint detection from large-scale 3D point clouds using vectorization and parallel computing approaches
1
作者 Yunfeng Ge Zihao Li +2 位作者 Huiming Tang Qian Chen Zhongxu Wen 《Geoscience Frontiers》 2025年第5期1-15,共15页
The application of three-dimensional(3D)point cloud parametric analyses on exposed rock surfaces,enabled by Light Detection and Ranging(LiDAR)technology,has gained significant popularity due to its efficiency and the ... The application of three-dimensional(3D)point cloud parametric analyses on exposed rock surfaces,enabled by Light Detection and Ranging(LiDAR)technology,has gained significant popularity due to its efficiency and the high quality of data it provides.However,as research extends to address more regional and complex geological challenges,the demand for algorithms that are both robust and highly efficient in processing large datasets continues to grow.This study proposes an advanced rock joint identification algorithm leveraging artificial neural networks(ANNs),incorporating parallel computing and vectorization of high-performance computing.The algorithm utilizes point cloud attributes—specifically point normal and point curvatures-as input parameters for ANNs,which classify data into rock joints and non-rock joints.Subsequently,individual rock joints are extracted using the density-based spatial clustering of applications with noise(DBSCAN)technique.Principal component analysis(PCA)is subsequently employed to calculate their orientations.By fully utilizing the computational power of parallel computing and vectorization,the algorithm increases the running speed by 3–4 times,enabling the processing of large-scale datasets within seconds.This breakthrough maximizes computational efficiency while maintaining high accuracy(compared with manual measurement,the deviation of the automatic measurement is within 2°),making it an effective solution for large-scale rock joint detection challenges.©2025 China University of Geosciences(Beijing)and Peking University. 展开更多
关键词 Rock joints Pointclouds Artificialneuralnetwork High-performance computing Parallel computing vecTORIZATION
在线阅读 下载PDF
Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
2
作者 Lin Lu Bo Sun +2 位作者 Zheng Wang Jialin Meng Tianyu Wang 《Nano-Micro Letters》 2026年第2期664-691,共28页
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el... As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies. 展开更多
关键词 TWO-DIMENSIONAL MXenes SENSOR Neuromorphic computing Multimodal intelligent system Wearable electronics
在线阅读 下载PDF
Mechanical Properties Analysis of Flexible Memristors for Neuromorphic Computing
3
作者 Zhenqian Zhu Jiheng Shui +1 位作者 Tianyu Wang Jialin Meng 《Nano-Micro Letters》 2026年第1期53-79,共27页
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle... The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics. 展开更多
关键词 Flexible memristor Neuromorphic computing Mechanical property Wearable electronics
在线阅读 下载PDF
High-Entropy Oxide Memristors for Neuromorphic Computing:From Material Engineering to Functional Integration
4
作者 Jia‑Li Yang Xin‑Gui Tang +4 位作者 Xuan Gu Qi‑Jun Sun Zhen‑Hua Tang Wen‑Hua Li Yan-Ping Jiang 《Nano-Micro Letters》 2026年第2期138-169,共32页
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f... High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics. 展开更多
关键词 High-entropy oxides MEMRISTORS Neuromorphic computing Configurational entropy Resistive switching
在线阅读 下载PDF
基于词典-TextCNN-Word2Vec组合模型的在线评价细粒度情感分析 被引量:7
5
作者 惠调艳 王智 +1 位作者 何振华 秦春秀 《情报理论与实践》 北大核心 2025年第2期168-177,共10页
[目的/意义]线上购物逐渐成为消费主流,在线情感评价成为消费者购买、厂商产品改进的重要决策依据。[方法/过程]深度挖掘商品显性和隐性属性特征,提出了融合词典-TextCNN-Word2Vec的在线评价细粒度情感分析模型。首先,利用Protég&#... [目的/意义]线上购物逐渐成为消费主流,在线情感评价成为消费者购买、厂商产品改进的重要决策依据。[方法/过程]深度挖掘商品显性和隐性属性特征,提出了融合词典-TextCNN-Word2Vec的在线评价细粒度情感分析模型。首先,利用Protégé软件和Pellet推理机推理等,构建了涵盖外观、硬件、软件、价格、质量、物流和服务7大主题维度的领域本体模型,并建立属性特征词典和情感词典;其次,针对三类在线评价,分别应用基于词典的显性属性情感分析模型、基于TextCNN的显性特征情感分类模型、基于Word2Vec的隐性特征情感分析模型,计算属性特征词的情感值;最后,通过词频加权法和熵权法,自下而上计算各层级主题属性的情感值,实现了多层次细粒度的情感挖掘。[结果/结论]综合基于词典、TextCNN和Word2Vec情感属性映射的三种模型的在线情感分析,显著提高了商品属性特征和情感分析的准确性,商品显性和隐性属性特征的总提取率高达93.77%,商品特征情感分析的加权平均准确率为86.78%。该组合模型为数字经济时代商品多属性特征的细粒度在线情感评价提供了创新研究方法。 展开更多
关键词 细粒度情感分析 情感词典 TextCNN Word2vec
原文传递
基于LDA2Vec模型的国际区域合作标准化政策扩散研究 被引量:2
6
作者 方放 赵罗衣 《科研管理》 北大核心 2025年第5期142-151,共10页
标准是国际区域合作实现互联互通的坚实技术支撑和重要机制保障,标准化政策提供了标准化工作的规划部署与制度支持。本研究基于政策扩散理论,运用LDA2Vec模型对国家和省级层面的“一带一路”标准化政策文本进行深度挖掘,系统揭示我国国... 标准是国际区域合作实现互联互通的坚实技术支撑和重要机制保障,标准化政策提供了标准化工作的规划部署与制度支持。本研究基于政策扩散理论,运用LDA2Vec模型对国家和省级层面的“一带一路”标准化政策文本进行深度挖掘,系统揭示我国国际区域合作标准化政策扩散的内在逻辑和具有特色的政策模式和特征。研究发现:(1)针对层级政策导向维度,国家政策呈现综合性特点,而地区政策逐级传递、因地制宜,地域异质性明显。(2)针对时间演化维度,“一带一路”标准化政策发展可分为政策动员、拓展和调整三个阶段,并呈现出R型增长态势;同时政策主题演进包含传承、衍生和集成三种类型,而且具有交织融合的特点。(3)层级政策扩散受到纵向强制性扩散、央地互动和横向地方内部因素、学习与模仿机制影响,而路径依赖和社会学习机制是驱动政策随时间演化跨阶段扩散的内在逻辑。本研究丰富了政策扩散理论和国际区域合作标准化政策的相关研究,希冀为推动国际区域合作的高质量发展以及助力全球治理新方案供给提供政策决策体系制定和实施参考。 展开更多
关键词 LDA2vec 国际区域合作 标准化政策 政策导向 政策扩散
原文传递
我国智慧旅游政策的外部结构、工具特征与演进理路——基于LDA2Vec与政策工具的研究
7
作者 彭雷霆 黄延 《旅游学刊》 北大核心 2025年第8期147-161,共15页
随着数字技术与旅游业深度融合发展,智慧旅游已然成为旅游高质量发展的新动能。文章通过构建“外部结构-工具使用-演进理路”三维分析框架,运用政策工具法、LDA2Vec机器学习等方法,对2001—2023年间中央层面84份智慧旅游政策进行全面系... 随着数字技术与旅游业深度融合发展,智慧旅游已然成为旅游高质量发展的新动能。文章通过构建“外部结构-工具使用-演进理路”三维分析框架,运用政策工具法、LDA2Vec机器学习等方法,对2001—2023年间中央层面84份智慧旅游政策进行全面系统的历时纵向和剖面横向分析。研究发现:1)我国智慧旅游政策大致可划分为萌芽起步期、快速发展期与深化完善期,发文主体存在“主导-核心-参与”层级结构,合作网络由松散单一型转向紧密多主体型;2)政策工具从供给面、环境面转向需求面,需求型政策工具使用较为欠缺,且各工具内部的组合搭配不均;3)政策主题由信息化服务推进-数字化业态发展-智慧化生态建设依次演进,“人工智能+”与产业生态系统建设是未来政策制定的主要着力点。基于此,要进一步推进我国智慧旅游发展,可从增强部门统筹协调、优化政策工具结构、以系统思维支持产业生态建设、营造释放旅游数据要素潜能的制度环境等方面完善智慧旅游政策支持体系。 展开更多
关键词 智慧旅游政策 外部结构 政策工具 演进理路 LDA2vec
在线阅读 下载PDF
基于LDA-Word2vec的冷链物流政策的央地协同量化分析
8
作者 甘卫华 凌耀琛 +1 位作者 吴素浓 熊奥诗 《兰州交通大学学报》 2025年第4期9-20,共12页
自2008年以来,为推动冷链物流健康快速发展,国家及各省市出台了一系列冷链物流政策,这些政策的效果直接影响各地冷链物流的投资热度和运营质量。基于政策工具理论,以中央和地方(下文简称“央地”)出台的冷链物流政策作为研究对象,引入LD... 自2008年以来,为推动冷链物流健康快速发展,国家及各省市出台了一系列冷链物流政策,这些政策的效果直接影响各地冷链物流的投资热度和运营质量。基于政策工具理论,以中央和地方(下文简称“央地”)出台的冷链物流政策作为研究对象,引入LDA主题模型和Word2vec词嵌入算法,进行政策文本的主题归纳分析、地域性差异分析、时序差异分析和央地协同性分析。研究结果表明:1) 2008-2023年研究期内,冷链物流政策主要聚焦“冷链物流行业的标准化”、“专项支持资金打造农产品冷链物流体系”、“多策并举落地冷链物流项目”、“构建绿色高效冷链供应链新模式”等四个主题;2)研究期内,冷链物流规范性政策文本具有时序阶段性特征,可分为萌芽期、增长期和稳健期,且各阶段主题强度不同,保证冷链物流的均衡发展;3)冷链物流规范性政策文本具有区域多样性,各地区对冷链侧重点存在差异,因地制宜制定冷链物流政策;4)华东城市群的冷链物流政策的央地协同性高于其他地区,且政策主题较为丰富,不仅响应中央政策要求,也适应各地区发展。 展开更多
关键词 冷链物流 政策协同 LDA主题模型 Word2vec词嵌入算法
在线阅读 下载PDF
基于LDA-Word2vec的人工智能技术主题演化与热点主题识别
9
作者 王向前 高润凤 李慧宗 《九江学院学报(自然科学版)》 2025年第2期19-31,共13页
为识别人工智能关键技术,深入研究人工智能技术发展态势,有助于国家和企业及时把握人工智能发展动向,本文以人工智能领域中2009—2023年的专利文献为基础,融合运用LDA模型和Word2vec词向量技术,从主题强度和内容双重维度系统考察技术主... 为识别人工智能关键技术,深入研究人工智能技术发展态势,有助于国家和企业及时把握人工智能发展动向,本文以人工智能领域中2009—2023年的专利文献为基础,融合运用LDA模型和Word2vec词向量技术,从主题强度和内容双重维度系统考察技术主题的动态演变过程,同时构建主题热度、新颖度、影响力指标识别人工智能阶段性的热点主题。研究结果表明:①结合LDA主题建模能力和Word2vec语义处理能力能够有效提升技术主题识别精度,直观呈现人工智能领域细粒度技术主题的演化规律与特征;②人工智能领域的技术主题主要分为核心算法与技术基础、感知与交互技术、自然语言与语义理解、数据处理与安全、智能应用与自动化5大类范畴,且主题之间的关联和互动日益紧密;③通过对设计的指标进行综合评估,可以较好识别2009—2014年、2015—2019年和2020—2023年3个不同阶段的热点技术主题。 展开更多
关键词 人工智能 LDA模型 主题识别 Word2vec 主题演化 热点技术主题
在线阅读 下载PDF
基于Word2Vec模型的泥石流多源灾害数据融合研究 被引量:1
10
作者 晋磊 徐鹏 +2 位作者 黎杰 蔡迎春 杨海波 《人民黄河》 北大核心 2025年第7期97-102,共6页
在大数据、物联网与人工智能技术快速发展的背景下,泥石流灾害数据正日益呈现出海量、多源、异构的特点。主要采用jieba、NLPIR和LTP等分词工具抽取模型库,对非结构化存储的泥石流灾害数据进行解析与抽取,并汇聚至数据库,实现数据融合... 在大数据、物联网与人工智能技术快速发展的背景下,泥石流灾害数据正日益呈现出海量、多源、异构的特点。主要采用jieba、NLPIR和LTP等分词工具抽取模型库,对非结构化存储的泥石流灾害数据进行解析与抽取,并汇聚至数据库,实现数据融合。通过Word2Vec模型将词语映射到高维空间中,实现文本中的词汇转换为实数向量;采用t-SNE算法和Kernel PCA算法将高维词向量转换为低维度的向量,使用K-means算法对其进行聚类可视化。研究结果表明:在数据抽取评估方面,一致性、完整性、准确性的评估均值在0.800以上,均方差小于0.050。对比PCA和t-SNE两种降维方法,通过轮廓系数(Silhouette Score,SS)评估聚类效果,PCA的SS指标值为0.359,t-SNE的SS指标值为0.336,结果显示PCA表现更优。Bert模型具有较强的上下文理解能力,更加适合泥石流灾害数据抽取,依托Word2Vec模型的CBOW架构获取词向量,结果显示PCA在评价指标上整体表现优于t-SNE。针对泥石流灾害数据多源和语义一致性问题,涵盖从数据抽取、降维到聚类的全过程,为实现泥石流灾害数据的语义融合与统一管理提供了有效支持。 展开更多
关键词 泥石流灾害 知识抽取 质量评估 知识融合 Word2vec
在线阅读 下载PDF
基于多头注意力机制的Wav2Vec 2.0-LSTM语音情感识别
11
作者 张红兵 孙惠民 《电声技术》 2025年第8期27-29,79,共4页
传统语音情感识别方法依赖人工设计的特征,难以捕捉到语音中的复杂情感信息并进行准确分类。针对该问题提出一种基于多头注意力机制的Wav2Vec 2.0模型和长短期记忆(Long Short-Term Memory,LSTM)网络相结合的语音情感识别模型,并采用加... 传统语音情感识别方法依赖人工设计的特征,难以捕捉到语音中的复杂情感信息并进行准确分类。针对该问题提出一种基于多头注意力机制的Wav2Vec 2.0模型和长短期记忆(Long Short-Term Memory,LSTM)网络相结合的语音情感识别模型,并采用加权准确率和未加全准确率作为评价指标,在两个公开情感数据集IEMOCAP和RAVDESS上进行实验。实验结果表明,相较于其他基线模型,新模型在语音情感识别任务中具有较高的识别精度。 展开更多
关键词 语音情感识别 Wav2vec 2.0模型 长短期记忆(LSTM)网络 多头注意力机制
在线阅读 下载PDF
A revised version of the program VEC (visual computing in electron crystallography)
12
作者 李雪明 李方华 范海福 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2459-2463,共5页
The program package VEC (Visual computing in Electron Crystallography) has been revised such that (i) a program converting one-line symbols to two-line symbols of (3+1)-dimensional superspace groups has been in... The program package VEC (Visual computing in Electron Crystallography) has been revised such that (i) a program converting one-line symbols to two-line symbols of (3+1)-dimensional superspace groups has been incorporated into VEC so that the latter can interpret both kinds of symbols; (ii) a bug in calculating structure factors of onedimensionally incommensurate modulated crystals has been fixed. The correction has been verified by successfully matching the experimental electron microscopy image of an incommensurate crystal with a series of simulated images. The precompiled revised version of VEC and relevant materials are available on the Web at http://cryst.iphy.ac.cn. 展开更多
关键词 vec electron crystallography computer program
原文传递
VEC中基于计算资源动态变化的服务迁移策略
13
作者 范艳芳 宋志文 +1 位作者 蔡英 陈若愚 《计算机仿真》 2025年第2期134-139,共6页
在车载边缘计算中,通过虚拟化技术将应用程序及其依赖项封装为服务实体,并且随着车辆的移动而不断迁移服务实体,极大提升了车辆的服务质量。然而,如果迁移到计算资源占用率过高的边缘服务器,就出现因服务需求得不到满足,而导致服务质量... 在车载边缘计算中,通过虚拟化技术将应用程序及其依赖项封装为服务实体,并且随着车辆的移动而不断迁移服务实体,极大提升了车辆的服务质量。然而,如果迁移到计算资源占用率过高的边缘服务器,就出现因服务需求得不到满足,而导致服务质量下降和系统总开销上升的情况。因此,将边缘服务器的计算资源占用率和车辆的计算资源需求纳入迁移策略,以最小化系统总开销。并提出了基于计算资源动态变化的服务迁移策略。将服务迁移问题描述为一个马尔可夫决策过程,并提出了一种基于深度强化学习的迁移算法进行求解。仿真结果表明,所提策略可以有效降低计算开销来提升服务质量。与其它策略相比,系统总开销减少了10%以上。 展开更多
关键词 车载边缘计算 服务迁移 深度强化学习
在线阅读 下载PDF
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
14
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
基于Word2vec-CNN与情感词典的情感分析模型构建及性能对比 被引量:1
15
作者 戴鹏 麻翊晨 +1 位作者 张静 裘坚杰 《信息系统工程》 2025年第4期129-132,共4页
情感分析是自然语言处理(NLP)领域的重要任务,广泛应用于舆情监测、产品评价分析等领域。传统的情感词典方法因高可解释性和低计算成本,在计算资源受限的环境下仍具有一定应用价值。然而,该方法难以处理新词、隐喻等复杂情感表达,泛化... 情感分析是自然语言处理(NLP)领域的重要任务,广泛应用于舆情监测、产品评价分析等领域。传统的情感词典方法因高可解释性和低计算成本,在计算资源受限的环境下仍具有一定应用价值。然而,该方法难以处理新词、隐喻等复杂情感表达,泛化能力有限。为提升情感分析的准确率和鲁棒性,构建了基于Word2vec-CNN的深度学习情感分析模型,并将其与情感词典方法在NLPCC 2014数据集上进行实验对比。 展开更多
关键词 情感分析 Word2vec 卷积神经网络(CNN) 情感词典
在线阅读 下载PDF
Experimental optical computing of complex vector convolution with twisted light 被引量:2
16
作者 Ling Hong Haoxu Guo +3 位作者 Xiaodong Qiu Fei Lin Wuhong Zhang Lixiang Chen 《Advanced Photonics Nexus》 2023年第4期96-101,共6页
Orbital angular momentum(OAM),emerging as an inherently high-dimensional property of photons,has boosted information capacity in optical communications.However,the potential of OAM in optical computing remains almost ... Orbital angular momentum(OAM),emerging as an inherently high-dimensional property of photons,has boosted information capacity in optical communications.However,the potential of OAM in optical computing remains almost unexplored.Here,we present a highly efficient optical computing protocol for complex vector convolution with the superposition of high-dimensional OAM eigenmodes.We used two cascaded spatial light modulators to prepare suitable OAM superpositions to encode two complex vectors.Then,a deep-learning strategy is devised to decode the complex OAM spectrum,thus accomplishing the optical convolution task.In our experiment,we succeed in demonstrating 7-,9-,and 11-dimensional complex vector convolutions,in which an average proximity better than 95%and a mean relative error<6%are achieved.Our present scheme can be extended to incorporate other degrees of freedom for a more versatile optical computing in the high-dimensional Hilbert space. 展开更多
关键词 optical computing complex vector convolution orbital angular momentum photonic spatial modes
在线阅读 下载PDF
基于任务抢占的VEC计算卸载与缓存优化方法
17
作者 施杰 唐宏 +1 位作者 刘子兴 燕星芮 《计算机应用研究》 北大核心 2025年第10期3122-3128,共7页
随着智能交通系统的快速发展,车载边缘计算中的计算资源分配不均与任务时延敏感性问题日益突出。然而,现有的研究中静态资源分配方法已难以满足动态车载环境的需求。针对此问题,提出了一种基于任务抢占的VEC计算卸载与缓存联合优化方案... 随着智能交通系统的快速发展,车载边缘计算中的计算资源分配不均与任务时延敏感性问题日益突出。然而,现有的研究中静态资源分配方法已难以满足动态车载环境的需求。针对此问题,提出了一种基于任务抢占的VEC计算卸载与缓存联合优化方案,实现缓存资源的弹性扩展与高效任务调度。首先,综合考虑任务优先级及路边停放车辆的空闲资源,构建了一个多车辆、多路边单元协同计算模型,利用齐普夫分布优化缓存策略;其次,引入任务抢占机制优先处理紧急任务,并整合停放车辆的闲置算力以缓解RSU负载过载问题;接着,为得到最优的任务卸载与缓存策略,以最小化系统平均时延为目标设计了联合优化问题。针对此高维非线性规划问题,结合深度强化学习,提出一种改进异步优势actor-critic算法。仿真结果表明,该算法相较于其他算法能够显著降低系统时延且提高了任务完成率,改善了实际场景中的用户体验。 展开更多
关键词 车载边缘计算 计算卸载 内容缓存 任务抢占 改进异步深度强化学习
在线阅读 下载PDF
基于Wav2Vec2.0特征融合与联合损失的深度伪造语音检测方法 被引量:1
18
作者 陈飞飞 郭海燕 +2 位作者 郭延民 葛子瑞 陆华庆 《信号处理》 北大核心 2025年第9期1547-1557,共11页
语音预训练模型Wav2Vec2.0能够通过多个隐藏层提取丰富的多层嵌入特征,在深度伪造语音检测任务中表现出良好的性能。将Wav2Vec2.0各层特征进行融合,是进一步挖掘语音数据深层次表示的有效途径,而改进Wav2Vec2.0各层特征的融合方式则有... 语音预训练模型Wav2Vec2.0能够通过多个隐藏层提取丰富的多层嵌入特征,在深度伪造语音检测任务中表现出良好的性能。将Wav2Vec2.0各层特征进行融合,是进一步挖掘语音数据深层次表示的有效途径,而改进Wav2Vec2.0各层特征的融合方式则有望进一步提升深度伪造语音检测性能。鉴于此,本文基于Wav2Vec2.0深度伪造语音检测架构,提出引入卷积注意力模块(Convolutional Block Attention Module,CBAM)对Wav2Vec2.0各层嵌入特征进行融合,通过结合通道注意力和空间注意力的加权融合方式来自适应地增强关键特征,有效提升模型的特征提取能力。在此基础上,考虑到伪造语音类型复杂多样,不同类型的伪造语音在鉴别难度上可能存在显著差异,为避免模型在处理难鉴别样本时存在的偏倚,同时使得类内特征分布紧凑、类间特征分布疏远。本文提出联合交叉熵损失、中心损失和焦点损失,构造模型的整体损失函数,充分利用各类损失的优势来增强模型在多种伪造语音场景下的判别能力和泛化性能。在ASVspoof 2019 LA、ASVspoof 2021 LA、ASVspoof 2021 DF和CFAD数据集上的实验结果表明,所提出的方法在常用评价指标等错误率(equal error rate,EER)和最小串联检测代价函数(minimum tandem detection cost function,min t-DCF)均表现出色。尤其是在ASVspoof 2021 LA数据集上,相较于AASIST、ECAPA-TDNN、ResNet,以及采用Wav2Vec2.0进行前端特征提取的多种对比方案,本文方法显著优于所有对比方法。 展开更多
关键词 深度伪造语音检测 Wav2vec2.0 特征融合 联合损失
在线阅读 下载PDF
DNA Computing with Water Strider Based Vector Quantization for Data Storage Systems
19
作者 A.Arokiaraj Jovith S.Rama Sree +4 位作者 Gudikandhula Narasimha Rao K.Vijaya Kumar Woong Cho Gyanendra Prasad Joshi Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2023年第3期6429-6444,共16页
The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can b... The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can be employed,which encodes and decodes binary data to and from synthesized strands of DNA.Vector quantization(VQ)is a commonly employed scheme for image compression and the optimal codebook generation is an effective process to reach maximum compression efficiency.This article introduces a newDNAComputingwithWater StriderAlgorithm based Vector Quantization(DNAC-WSAVQ)technique for Data Storage Systems.The proposed DNAC-WSAVQ technique enables encoding data using DNA computing and then compresses it for effective data storage.Besides,the DNAC-WSAVQ model initially performsDNA encoding on the input images to generate a binary encoded form.In addition,aWater Strider algorithm with Linde-Buzo-Gray(WSA-LBG)model is applied for the compression process and thereby storage area can be considerably minimized.In order to generate optimal codebook for LBG,the WSA is applied to it.The performance validation of the DNAC-WSAVQ model is carried out and the results are inspected under several measures.The comparative study highlighted the improved outcomes of the DNAC-WSAVQ model over the existing methods. 展开更多
关键词 DNA computing data storage image compression vector quantization ws algorithm space saving
在线阅读 下载PDF
Doc2Vec模型驱动的芯片竞争话语研究:主题意义与话语策略
20
作者 续雨媛 卫乃兴 《外语研究》 北大核心 2025年第5期27-35,共9页
基于分布式表示的Doc2Vec向量空间模型将抽象的语义关系表征为语义空间中的向量距离,可用于话语研究中的主题挖掘。本研究基于自建的中美媒体芯片竞争语料库,采用Doc2Vec模型进行主题挖掘,探讨中美媒体话语的主题意义与博弈策略。向量... 基于分布式表示的Doc2Vec向量空间模型将抽象的语义关系表征为语义空间中的向量距离,可用于话语研究中的主题挖掘。本研究基于自建的中美媒体芯片竞争语料库,采用Doc2Vec模型进行主题挖掘,探讨中美媒体话语的主题意义与博弈策略。向量数据表明,中美媒体围绕“芯片管制”“国际关系”“国家立法”“技术发展”等4个主题展开话语建构。在共享的“芯片管制”与“国际关系”主题下,双方话语策略迥异,呈现极强对抗态势:美方基于所谓“道义伦理学”合法化对华芯片管制,中方则从后果主义伦理原则发力,批判美方扰乱全球经济秩序,对之去合法化;美方借助危机叙事构建阵营对立,中方则以立足全人类共同价值的团结话语来消解。“国家立法”和“技术发展”分别为双方特有的主题,即美方通过零和博弈叙事,动员不同利益集团借助强制性法案遏制中国芯片发展;中方则聚焦技术自主创新,以事实性数据表征对芯片发展的信心。方法论上,本研究揭示,Doc2Vec模型、语料库方法与传统话语分析结合使用,对洞悉博弈双方的区别性话语建构及话语策略可产生协同效应,有助于拓展话语研究方法。 展开更多
关键词 Doc2vec模型 词嵌入 芯片竞争话语 对抗性话语 语料库话语研究
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部