Commutation failure(CF)is an inherent problem faced by line commutated converter high voltage direct current(LCC-HVDC)technology.To completely solve the problem of CF,we have proposed a novel hybrid commutated convert...Commutation failure(CF)is an inherent problem faced by line commutated converter high voltage direct current(LCC-HVDC)technology.To completely solve the problem of CF,we have proposed a novel hybrid commutated converter(HCC)technology based on reverse blocking integrated gate commutated thyristor,which can utilise two methods for commutation:enhanced grid voltage commutation and active turn-off forced com-mutation.In this paper,the topology and operating principle of HCC are proposed.Then,the control and protection strategy is designed based on the current variation trend under AC faults.To verify the effectiveness of HCC in mitigating CF,a 120-kV/360-MW HCC-HVDC model is built in PSCAD/EMTDC,adopting LCC at the rectifier side and HCC at the inverter side.Based on this model,HCC steady-state and fault transient stresses are analysed.Various AC faults are simulated and the performance of HCC-HVDC is compared with LCC-HVDC.Finally,the results show that the HCC topol-ogy and proposed control strategy can solve CF under all fault conditions with almost the same attributes as LCC,such as large capacity,low cost,low loss and high reliability,which is meaningful for the application of HCC to the HVDC transmission system.展开更多
This paper presents a thermal management framework for 120 kV hybrid commutated converter(HCC)valves,addressing critical cooling challenges in multi-hundred-MW power conversion systems.Power loss calculations under ra...This paper presents a thermal management framework for 120 kV hybrid commutated converter(HCC)valves,addressing critical cooling challenges in multi-hundred-MW power conversion systems.Power loss calculations under rated(1.0 p.u.)and overload(1.2 p.u.)conditions demonstrate that HCC valves achieve comparable loss levels to line commutated converter counterparts while enabling active turn-off control.Comparative analysis of radiator configurations identifies 2-parallel branch connections as optimal.Integrated thermal-fluid models combining 3D finite element analysis and computational fluid dynamics reveal significant temperature gradients and flow maldistribution in baseline designs.On this basis,this paper modifies the flow from equal flow resistance allocation to heat-based allocation and it reduces maximum integrated gate-commutated thyristor temperature rise by 7.3%at 1.2 p.u.with minimal pressure drop variation.Experimental validation confirms the proposed cooling strategy enhances valve safety margins through improved heat dissipation balance,providing a validated theoretical foundation for high-power converter thermal design.展开更多
This paper presents a fully customised integrated gate commutated thyristor(IGCT)gate driver monolithic integrated circuit(GDMIC),aiming to address the many shortcomings of traditional IGCT gate driver units composed ...This paper presents a fully customised integrated gate commutated thyristor(IGCT)gate driver monolithic integrated circuit(GDMIC),aiming to address the many shortcomings of traditional IGCT gate driver units composed of discrete components,such as the excessive number of components,low reliability,and complex development processes.The current-source driving characteristics of IGCTs pose significant technical challenges for developing fully customised integrated circuits(IC).The customised requirements of IGCT gate driver chips under various operating conditions are explored regarding functional module division,power sequencing,and chip parameter specifications.However,existing high-side(HS)driver methods exhibit limitations in functional monolithic integration and bipolar complementary metal-oxide-semiconductor compat-ibility.To address these challenges,a novel HS driving topology based on floating linear regulators is proposed.It can achieve synchronised control of multi-channel floating power transistors while supporting 100%duty cycle continuous conduction.The pro-posed GDMIC reduces the three independent HS power supplies to a single multiplexed topology,significantly decreasing circuit complexity.Experimental results validate the feasibility and performance of a 4-inch gate driver prototype based on IGCT current-source management IC,demonstrating significant advantages in reducing the number of components,enhancing device reliability,and simplifying development.The proposed GDMIC offers an innovative development path for future high-power IGCT drivers.展开更多
The introduction of fully controlled devices to build hybrid line commutated converter(H-LCC)has become a new idea to solve the commutation failure.However,existing H-LCC has not considered the implementation of a tar...The introduction of fully controlled devices to build hybrid line commutated converter(H-LCC)has become a new idea to solve the commutation failure.However,existing H-LCC has not considered the implementation of a targeted firing angle control strategy during AC faults,with the objective of enhancing their power transmission and fault response performance.For this reason,this paper proposes an optimized control method for firing angle of H-LCC,designated as flexible virtual firing(FVF).This method first analyzes the influence of alterations in firing angle on reactive power,commutation process and associated action paths.By combining prediction and dynamic search,it optimizes the natural commutation process through the utilization of dynamic boundary and minimum commutation area difference.This can mitigate the impact of AC faults on H-LCC and DC system,thereby improving power transmission and defense to commutation failure,which is beneficial for improving the stability of AC/DC power grids.Finally,the simulation results in PSCAD/EMTDC verify the effectiveness of the proposed method.展开更多
To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hyb...To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.展开更多
To reduce the probability of commutation failure(CF)of a line commutated converter based high-voltage direct current(LCC-HVDC)transmission,a DC chopper topology composed of power consumption sub-modules based on thyri...To reduce the probability of commutation failure(CF)of a line commutated converter based high-voltage direct current(LCC-HVDC)transmission,a DC chopper topology composed of power consumption sub-modules based on thyristor full-bridge module(TFB-PCSM)is proposed.Firstly,the mechanism of the proposed topology to mitigate CF is analyzed,and the working modes of TFB-PCSM in different operation states are introduced.Secondly,the coordinated control strategy between the proposed DC chopper and LCC-HVDC is designed,and the voltage-current stresses of the TFB-PCSMs are investigated.Finally,the ability to mitigate the CF issues and the fault recovery performance of LCC-HVDC system are studied in PSCAD/EMTDC.The results show that the probability of CF of LCC-HVDC is significantly reduced,and the performances of fault recovery are effectively improved by the proposed DC chopper.展开更多
The implementation of a simple power converter for a wound rotor induction generator employing a three phase diode bridge rectifier and a line commutated inverter in the rotor circuit for super synchronous speeds has ...The implementation of a simple power converter for a wound rotor induction generator employing a three phase diode bridge rectifier and a line commutated inverter in the rotor circuit for super synchronous speeds has been proposed. The detailed working of the system in power smoothing mode and maximum power point tracking mode is presented. The current flow in the rotor circuit is controlled (by controlling the firing angle of the line commutated inverter) for controlling the stator power in both the modes. An 8 bit PIC microcontroller has been programmed to vary the firing angle of the line commutated inverter. Experiments have been carried out on a 3- phase, 3.73 kW, 400V, 50Hz, 4-pole, 1500r/rain wound rotor induction generator and the results obtained with the generator supplying power in both the modes are furnished. The complete scheme has been modeled using MATLAB/SIMULINK blocks and a simulation study has been conducted. The experimental waveforms are compared with the simulation results and a very close agreement between them is observed.展开更多
This paper proposes a novel AC filter system for a line commutated converter high voltage DC(LCC-HVDC)transmission system.Through the coordination of the hybrid active power filters(APF)and the existing reactive compe...This paper proposes a novel AC filter system for a line commutated converter high voltage DC(LCC-HVDC)transmission system.Through the coordination of the hybrid active power filters(APF)and the existing reactive compensation devices,the proposed filter system can not only enhance the suppression performance for LCC-HVDC harmonics,but also optimize the AC yard layout with reduced reactive power subbanks,reducing the cost of HVDC projects.The novel filter system adopts a serial passive resonance topology obtained by careful comparison of different APFs.A proper control scheme is then designed integrating the control strategy of the APF and impedance characteristics of the HVDC system,which is able to realize harmonic suppression and dynamic reactive power support simultaneously.In addition,a novel self-adaption digital low-pass filter algorithm is presented,which is used in the APF harmonic detecting step,enhancing both high precision and fast dynamic response.On the basis of a real HVDC project,the advantages of proposed filter system in harmonic suppression,reactive power regulation,and sub-banks reduction are simulated and demonstrated.展开更多
LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional...LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained.展开更多
Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(...Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.展开更多
In this paper,the authors study the fractional Calderon type commutator T_(Ω,α)^(A)and its maximal operator M_(Ω,α)^(A)with kernels having some kinds of Log-type Dini-condition and obtain the compactness on Morrey...In this paper,the authors study the fractional Calderon type commutator T_(Ω,α)^(A)and its maximal operator M_(Ω,α)^(A)with kernels having some kinds of Log-type Dini-condition and obtain the compactness on Morrey spaces L^(p,λ)(R^(n)).展开更多
In this article,the viscoelastic damped was equation in three-dimensional cylindrical domain were studied by using a second-order differential inequality.We proved a Phragm´en-Lindelof alternative results,i.e.,th...In this article,the viscoelastic damped was equation in three-dimensional cylindrical domain were studied by using a second-order differential inequality.We proved a Phragm´en-Lindelof alternative results,i.e.,the smooth solutions either grow or decay exponentially as the distance from the entry section tends to infinity.Our results can be seen as a version of the Saint-Venant principle.展开更多
Presented is design concept for key parameters o f the reverse conducting gate commutated thyristor (RC-GCT),such as the thickness and concentration of n-base region and the transparent anode region,and the wi dth o...Presented is design concept for key parameters o f the reverse conducting gate commutated thyristor (RC-GCT),such as the thickness and concentration of n-base region and the transparent anode region,and the wi dth of separation region between asymmetric GCT and PIN diode.A structure model of the RC-GCT is set up based on the design concept and its characteristics are analyzed.The simulation results show the design concept is reasonable.展开更多
Countries worldwide are advocating for energy transition initiatives to promote the construction of low-carbon energy systems.The low voltage ride through(LVRT)characteristics of renewable energy units and commutation...Countries worldwide are advocating for energy transition initiatives to promote the construction of low-carbon energy systems.The low voltage ride through(LVRT)characteristics of renewable energy units and commutation failures in line commutated converter high voltage direct current(LCC-HVDC)systems at the receiving end leads to short-term power shortage(STPS),which differs from traditional frequency stability issues.STPS occurs during the generator’s power angle swing phase,before the governor responds,and is on a timescale that is not related to primary frequency regulation.This paper addresses these challenges by examining the impact of LVRT on voltage stability,developing a frequency response model to analyze the mechanism of frequency instability caused by STPS,deriving the impact of STPS on the maximum frequency deviation,and introducing an energy deficiency factor to assess its impact on regional frequency stability.The East China Power Grid is used as a case study,where the energy deficiency factor is calculated to validate the proposed mechanism.STPS is mainly compensated by the rotor kinetic energy of the generators in this region,with minimal impact on other regions.It is concluded that the energy deficiency factor provides an effective explanation for the spatial distribution of the impact of STPS on system frequency.展开更多
For the people of Masaka,Kabuga and Muyumbu in Rwanda,the daily commute often takes longer than it should.A stretch of just 10 km along the Prince House-Giporoso-Masaka road can take half an hour during peak hours.The...For the people of Masaka,Kabuga and Muyumbu in Rwanda,the daily commute often takes longer than it should.A stretch of just 10 km along the Prince House-Giporoso-Masaka road can take half an hour during peak hours.The narrow two-lane artery,clogged with long-haul trucks from the Rwanda-Tanzania border and commuter traffic,has long tested the patience of drivers and pedestrians alike.In May,a long-awaited announcement finally arrived.Rwanda’s Ministry of Infrastructure confirmed plans to expand the road from two lanes to four,adding a 1.2-km flyover at Giporoso-Remera and an underpass to keep tra"c flowing smoothly.The$60.5 million(Rwf86 billion)project will be fully funded by China,a testament to the deepening friendship and cooperation between the two nations.For many residents,it signals the end of years of lost time and daily frustration.展开更多
For 1<p<∞,Coifman-Rochberg-Weiss established L^(p) boundedness of commutators of smooth kernels.Later,many works tried to weaken the smooth condition.In this paper,we extend these mentioned results to the case ...For 1<p<∞,Coifman-Rochberg-Weiss established L^(p) boundedness of commutators of smooth kernels.Later,many works tried to weaken the smooth condition.In this paper,we extend these mentioned results to the case of non-homogeneous but with strong H¨ormander condition.Our main skills lie in wavelet decomposition,wavelet commutators,Hardy-Littlewood maximal operator and Fefferman-Stein's vector-valued maximum function Theorem.展开更多
This paper considers compactness of the commutator[b,I_(α)]i(i=1,2),where I_(α)is a bilinear fractional integral operator,and b is a function in generalized Campanato spaces with variable growth condition.The author...This paper considers compactness of the commutator[b,I_(α)]i(i=1,2),where I_(α)is a bilinear fractional integral operator,and b is a function in generalized Campanato spaces with variable growth condition.The author gives sufficient conditions for the compactness of[b,I_(α)],(i=1,2)from the product of generalized Morrey spaces to generalized Morrey spaces.展开更多
In this paper we present certain bilinear estimates for commutators on Besov spaces with variable smoothness and integrability,and under no vanishing assumptions on the divergence of vector fields.Such commutator esti...In this paper we present certain bilinear estimates for commutators on Besov spaces with variable smoothness and integrability,and under no vanishing assumptions on the divergence of vector fields.Such commutator estimates are motivated by the study of well-posedness results for some models in incompressible fuid mechanics.展开更多
We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish...We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish the boundedness of higher-order commutators ofμ_(S)^(?)andμ_(λ),^(*,?)with BMO functions applying some properties of variable exponents and generalized BMO norms.展开更多
The integration of large-scale new energy and high-capacity DC transmission leads to a reduction in system inertia.Grid-forming renewable energy sources(GF-RES)has a significant improvement effect on system inertia.Co...The integration of large-scale new energy and high-capacity DC transmission leads to a reduction in system inertia.Grid-forming renewable energy sources(GF-RES)has a significant improvement effect on system inertia.Commutation failure faults may cause a short-term reactive power surplus at the sending end and trigger transient overvoltage,threatening the safe and stable operation of the power grid.However,there is a lack of research on the calculation method of transient overvoltage caused by commutation failure in high-voltage DC transmission systems with grid-forming renewable energy sources integration.Based on the existing equivalent model of highvoltage DC transmission systems at the sending end,this paper proposes to construct a model of the high-voltage DC transmission system at the sending end with grid-forming renewable energy sources.The paper first clarifies the mechanism of overvoltage generation,then considers the reactive power droop control characteristics of GF-RES,and derives the transient voltage calculation model of theDC transmission system with GF-RES integration.It also proposes a calculation method for transient overvoltage at the sending-end converter bus with GF-RES integration.Based on the PSCAD/EMTDC simulation platform,this paper builds an experimental simulation model.By constructing three different experimental scenarios,the accuracy and effectiveness of the proposed transient overvoltage calculation method are verified,with a calculation error within 5%.At the same time,this paper quantitatively analyzes the impact of grid strength,new energy proportion,and rated transmission power on transient overvoltage from three different perspectives.展开更多
基金National Natural Science Foundation of China-State Grid Corporation Joint Fund for Smart Grid,Grant/Award Number:U2166602。
文摘Commutation failure(CF)is an inherent problem faced by line commutated converter high voltage direct current(LCC-HVDC)technology.To completely solve the problem of CF,we have proposed a novel hybrid commutated converter(HCC)technology based on reverse blocking integrated gate commutated thyristor,which can utilise two methods for commutation:enhanced grid voltage commutation and active turn-off forced com-mutation.In this paper,the topology and operating principle of HCC are proposed.Then,the control and protection strategy is designed based on the current variation trend under AC faults.To verify the effectiveness of HCC in mitigating CF,a 120-kV/360-MW HCC-HVDC model is built in PSCAD/EMTDC,adopting LCC at the rectifier side and HCC at the inverter side.Based on this model,HCC steady-state and fault transient stresses are analysed.Various AC faults are simulated and the performance of HCC-HVDC is compared with LCC-HVDC.Finally,the results show that the HCC topol-ogy and proposed control strategy can solve CF under all fault conditions with almost the same attributes as LCC,such as large capacity,low cost,low loss and high reliability,which is meaningful for the application of HCC to the HVDC transmission system.
基金National Key Research and Development Program,Grant/Award Number:2023YFB2405900。
文摘This paper presents a thermal management framework for 120 kV hybrid commutated converter(HCC)valves,addressing critical cooling challenges in multi-hundred-MW power conversion systems.Power loss calculations under rated(1.0 p.u.)and overload(1.2 p.u.)conditions demonstrate that HCC valves achieve comparable loss levels to line commutated converter counterparts while enabling active turn-off control.Comparative analysis of radiator configurations identifies 2-parallel branch connections as optimal.Integrated thermal-fluid models combining 3D finite element analysis and computational fluid dynamics reveal significant temperature gradients and flow maldistribution in baseline designs.On this basis,this paper modifies the flow from equal flow resistance allocation to heat-based allocation and it reduces maximum integrated gate-commutated thyristor temperature rise by 7.3%at 1.2 p.u.with minimal pressure drop variation.Experimental validation confirms the proposed cooling strategy enhances valve safety margins through improved heat dissipation balance,providing a validated theoretical foundation for high-power converter thermal design.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFB2401604The Integration Projects of National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid,Grant/Award Number:U2166602National Natural Science Foundation of China,Grant/Award Number:52241701。
文摘This paper presents a fully customised integrated gate commutated thyristor(IGCT)gate driver monolithic integrated circuit(GDMIC),aiming to address the many shortcomings of traditional IGCT gate driver units composed of discrete components,such as the excessive number of components,low reliability,and complex development processes.The current-source driving characteristics of IGCTs pose significant technical challenges for developing fully customised integrated circuits(IC).The customised requirements of IGCT gate driver chips under various operating conditions are explored regarding functional module division,power sequencing,and chip parameter specifications.However,existing high-side(HS)driver methods exhibit limitations in functional monolithic integration and bipolar complementary metal-oxide-semiconductor compat-ibility.To address these challenges,a novel HS driving topology based on floating linear regulators is proposed.It can achieve synchronised control of multi-channel floating power transistors while supporting 100%duty cycle continuous conduction.The pro-posed GDMIC reduces the three independent HS power supplies to a single multiplexed topology,significantly decreasing circuit complexity.Experimental results validate the feasibility and performance of a 4-inch gate driver prototype based on IGCT current-source management IC,demonstrating significant advantages in reducing the number of components,enhancing device reliability,and simplifying development.The proposed GDMIC offers an innovative development path for future high-power IGCT drivers.
基金supported in part by the National Key Research and Development Program of China(No.2021YFB2400900)the Integration Projects of National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U2166602)+1 种基金the National Natural Science Foundation of China(No.52207200)the Science and Technology Innovation Program of Hunan Province(No.2024RC3113).
文摘The introduction of fully controlled devices to build hybrid line commutated converter(H-LCC)has become a new idea to solve the commutation failure.However,existing H-LCC has not considered the implementation of a targeted firing angle control strategy during AC faults,with the objective of enhancing their power transmission and fault response performance.For this reason,this paper proposes an optimized control method for firing angle of H-LCC,designated as flexible virtual firing(FVF).This method first analyzes the influence of alterations in firing angle on reactive power,commutation process and associated action paths.By combining prediction and dynamic search,it optimizes the natural commutation process through the utilization of dynamic boundary and minimum commutation area difference.This can mitigate the impact of AC faults on H-LCC and DC system,thereby improving power transmission and defense to commutation failure,which is beneficial for improving the stability of AC/DC power grids.Finally,the simulation results in PSCAD/EMTDC verify the effectiveness of the proposed method.
基金supported by Science and Technology Project of the headquarters of the State Grid Corporation of China(No.5500-202324492A-3-2-ZN).
文摘To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.
基金supported by National Natural Science Foundation of China(No.51877077)。
文摘To reduce the probability of commutation failure(CF)of a line commutated converter based high-voltage direct current(LCC-HVDC)transmission,a DC chopper topology composed of power consumption sub-modules based on thyristor full-bridge module(TFB-PCSM)is proposed.Firstly,the mechanism of the proposed topology to mitigate CF is analyzed,and the working modes of TFB-PCSM in different operation states are introduced.Secondly,the coordinated control strategy between the proposed DC chopper and LCC-HVDC is designed,and the voltage-current stresses of the TFB-PCSMs are investigated.Finally,the ability to mitigate the CF issues and the fault recovery performance of LCC-HVDC system are studied in PSCAD/EMTDC.The results show that the probability of CF of LCC-HVDC is significantly reduced,and the performances of fault recovery are effectively improved by the proposed DC chopper.
文摘The implementation of a simple power converter for a wound rotor induction generator employing a three phase diode bridge rectifier and a line commutated inverter in the rotor circuit for super synchronous speeds has been proposed. The detailed working of the system in power smoothing mode and maximum power point tracking mode is presented. The current flow in the rotor circuit is controlled (by controlling the firing angle of the line commutated inverter) for controlling the stator power in both the modes. An 8 bit PIC microcontroller has been programmed to vary the firing angle of the line commutated inverter. Experiments have been carried out on a 3- phase, 3.73 kW, 400V, 50Hz, 4-pole, 1500r/rain wound rotor induction generator and the results obtained with the generator supplying power in both the modes are furnished. The complete scheme has been modeled using MATLAB/SIMULINK blocks and a simulation study has been conducted. The experimental waveforms are compared with the simulation results and a very close agreement between them is observed.
基金This work was supported in part by the National Natural Science Foundation of China(U1766210,51625702)Science and Technology Program of SGCC.
文摘This paper proposes a novel AC filter system for a line commutated converter high voltage DC(LCC-HVDC)transmission system.Through the coordination of the hybrid active power filters(APF)and the existing reactive compensation devices,the proposed filter system can not only enhance the suppression performance for LCC-HVDC harmonics,but also optimize the AC yard layout with reduced reactive power subbanks,reducing the cost of HVDC projects.The novel filter system adopts a serial passive resonance topology obtained by careful comparison of different APFs.A proper control scheme is then designed integrating the control strategy of the APF and impedance characteristics of the HVDC system,which is able to realize harmonic suppression and dynamic reactive power support simultaneously.In addition,a novel self-adaption digital low-pass filter algorithm is presented,which is used in the APF harmonic detecting step,enhancing both high precision and fast dynamic response.On the basis of a real HVDC project,the advantages of proposed filter system in harmonic suppression,reactive power regulation,and sub-banks reduction are simulated and demonstrated.
文摘LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained.
基金Supported by NSFC(No.11971295)Guangdong Higher Education Teaching Reform Project(No.2023307)。
文摘Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.
文摘In this paper,the authors study the fractional Calderon type commutator T_(Ω,α)^(A)and its maximal operator M_(Ω,α)^(A)with kernels having some kinds of Log-type Dini-condition and obtain the compactness on Morrey spaces L^(p,λ)(R^(n)).
基金Supported by the Guangdong Natural Science foundation(2023A1515012044)Special Project of Guangdong Province in Key Fields of Ordinary Colleges and Universities(2023ZDZX4069)+1 种基金the Research Team of Guangzhou Huashang College(2021HSKT01)Guangzhou Huashang College’s Characteristic Research Projects(2024HSTS09)。
文摘In this article,the viscoelastic damped was equation in three-dimensional cylindrical domain were studied by using a second-order differential inequality.We proved a Phragm´en-Lindelof alternative results,i.e.,the smooth solutions either grow or decay exponentially as the distance from the entry section tends to infinity.Our results can be seen as a version of the Saint-Venant principle.
文摘Presented is design concept for key parameters o f the reverse conducting gate commutated thyristor (RC-GCT),such as the thickness and concentration of n-base region and the transparent anode region,and the wi dth of separation region between asymmetric GCT and PIN diode.A structure model of the RC-GCT is set up based on the design concept and its characteristics are analyzed.The simulation results show the design concept is reasonable.
基金funded by the Technology Project of State Grid Corporation of China(Research on Safety and Stability Evaluation and Optimization Enhancement Technology of Flexible Ultra High Voltage Multiterminal DC System Adapting to the Background of“Sand and Gobi Deserts”),grant number J2024003。
文摘Countries worldwide are advocating for energy transition initiatives to promote the construction of low-carbon energy systems.The low voltage ride through(LVRT)characteristics of renewable energy units and commutation failures in line commutated converter high voltage direct current(LCC-HVDC)systems at the receiving end leads to short-term power shortage(STPS),which differs from traditional frequency stability issues.STPS occurs during the generator’s power angle swing phase,before the governor responds,and is on a timescale that is not related to primary frequency regulation.This paper addresses these challenges by examining the impact of LVRT on voltage stability,developing a frequency response model to analyze the mechanism of frequency instability caused by STPS,deriving the impact of STPS on the maximum frequency deviation,and introducing an energy deficiency factor to assess its impact on regional frequency stability.The East China Power Grid is used as a case study,where the energy deficiency factor is calculated to validate the proposed mechanism.STPS is mainly compensated by the rotor kinetic energy of the generators in this region,with minimal impact on other regions.It is concluded that the energy deficiency factor provides an effective explanation for the spatial distribution of the impact of STPS on system frequency.
文摘For the people of Masaka,Kabuga and Muyumbu in Rwanda,the daily commute often takes longer than it should.A stretch of just 10 km along the Prince House-Giporoso-Masaka road can take half an hour during peak hours.The narrow two-lane artery,clogged with long-haul trucks from the Rwanda-Tanzania border and commuter traffic,has long tested the patience of drivers and pedestrians alike.In May,a long-awaited announcement finally arrived.Rwanda’s Ministry of Infrastructure confirmed plans to expand the road from two lanes to four,adding a 1.2-km flyover at Giporoso-Remera and an underpass to keep tra"c flowing smoothly.The$60.5 million(Rwf86 billion)project will be fully funded by China,a testament to the deepening friendship and cooperation between the two nations.For many residents,it signals the end of years of lost time and daily frustration.
基金partially supported by the research grant of Macao University of Science and Technology(FRG-22-075-MCMS)the Macao Government Research Funding(FDCT0128/2022/A)+2 种基金the Science and Technology Development Fund of Macao SAR(005/2022/ALC)the Science and Technology Development Fund of Macao SAR(0045/2021/A)Macao University of Science and Technology(FRG-20-021-MISE)。
文摘For 1<p<∞,Coifman-Rochberg-Weiss established L^(p) boundedness of commutators of smooth kernels.Later,many works tried to weaken the smooth condition.In this paper,we extend these mentioned results to the case of non-homogeneous but with strong H¨ormander condition.Our main skills lie in wavelet decomposition,wavelet commutators,Hardy-Littlewood maximal operator and Fefferman-Stein's vector-valued maximum function Theorem.
基金Supported by the Key Project of the Education Department of Fujian Province(JZ230054)the Sanming University's High-Level Talent Introduction Project(23YG09)the Natural Science Foundation of Fujian Province(2024J01903)。
文摘This paper considers compactness of the commutator[b,I_(α)]i(i=1,2),where I_(α)is a bilinear fractional integral operator,and b is a function in generalized Campanato spaces with variable growth condition.The author gives sufficient conditions for the compactness of[b,I_(α)],(i=1,2)from the product of generalized Morrey spaces to generalized Morrey spaces.
文摘In this paper we present certain bilinear estimates for commutators on Besov spaces with variable smoothness and integrability,and under no vanishing assumptions on the divergence of vector fields.Such commutator estimates are motivated by the study of well-posedness results for some models in incompressible fuid mechanics.
基金Supported by the Natural Science Research Project of Anhui Educational Committee(Grant No.2024AH050129)。
文摘We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish the boundedness of higher-order commutators ofμ_(S)^(?)andμ_(λ),^(*,?)with BMO functions applying some properties of variable exponents and generalized BMO norms.
基金supported by Key Natural Science Research Projects of Colleges and Universities in Anhui Province(2022AH051831).
文摘The integration of large-scale new energy and high-capacity DC transmission leads to a reduction in system inertia.Grid-forming renewable energy sources(GF-RES)has a significant improvement effect on system inertia.Commutation failure faults may cause a short-term reactive power surplus at the sending end and trigger transient overvoltage,threatening the safe and stable operation of the power grid.However,there is a lack of research on the calculation method of transient overvoltage caused by commutation failure in high-voltage DC transmission systems with grid-forming renewable energy sources integration.Based on the existing equivalent model of highvoltage DC transmission systems at the sending end,this paper proposes to construct a model of the high-voltage DC transmission system at the sending end with grid-forming renewable energy sources.The paper first clarifies the mechanism of overvoltage generation,then considers the reactive power droop control characteristics of GF-RES,and derives the transient voltage calculation model of theDC transmission system with GF-RES integration.It also proposes a calculation method for transient overvoltage at the sending-end converter bus with GF-RES integration.Based on the PSCAD/EMTDC simulation platform,this paper builds an experimental simulation model.By constructing three different experimental scenarios,the accuracy and effectiveness of the proposed transient overvoltage calculation method are verified,with a calculation error within 5%.At the same time,this paper quantitatively analyzes the impact of grid strength,new energy proportion,and rated transmission power on transient overvoltage from three different perspectives.