Owing to their unique optical properties and nontoxicity,lead-free halide double perovskite nanocrystals are of interest for widespread applications.Herein,the colloid synthesis and photoluminescenc e property of Ag^(...Owing to their unique optical properties and nontoxicity,lead-free halide double perovskite nanocrystals are of interest for widespread applications.Herein,the colloid synthesis and photoluminescenc e property of Ag^(+)-Eu^(3+)codoped Cs_(2)NaInCl_(6)nanocrystals were investigated.The pe rovskite nanocrystals exhibit a broad warm-white photo luminescence with correlated color temperature(CCT)of 3447 K and color rendering index(CRI)of 90.2,and the means of codoping would improve its optical performance.A fast energy transfer and a long-lived self-trapped excitons state are unveiled by the femtosecond transient absorption spectra.The fast energy transfer from the self-trapped excitons of host nanocrystals to the Eu^(3+)ions is helpful to achieve a broad photoluminescence,and the quantum yield of Cs_(2)NaInCl_(6):0.05Ag^(+)-Eu^(3+)anocrystals can be enha nced to 69.5%.There is a large exciton binding energy and strong electron-phonon interaction in the codoped perovskite nanocrystals.The efficient and excellent air-stable double perovskite nanocrystals would be considered as a single-component phosphor for warm-white lighting.展开更多
Co-V-Ga-based shape memory alloys have shown great potential in the field of solid-state elastocaloric refrigeration due to their low stress hysteresis(Δσ_(hys)) and excellent superelasticity.However,large applied s...Co-V-Ga-based shape memory alloys have shown great potential in the field of solid-state elastocaloric refrigeration due to their low stress hysteresis(Δσ_(hys)) and excellent superelasticity.However,large applied stress and low adiabatic temperature change(ΔT_(ad)) greatly limit the application of Co-V-Ga-based alloys as elastocaloric materials.Here,we have successfully achieved a breakthrough in material properties by innovatively introducing the co-doping strategy of Mn and Ti elements.It was found that the synergistic effect of Mn and Ti significantly enhanced the mechanical properties of the Co_(52)V_(31)Ga_(14)Mn_(1)Ti_(2) alloy through solid solution strengthening,fine grain strengthening,and precipitation strengthening mechanisms.A large ΔT_(ad) of-11 K was obtained for the Co_(52)V_(31)Ga_(14)Mn_(1)Ti_(2) bulk poly crystalline alloy under a very low applied stress of 380 MPa.This is mainly due to the strong texture of <001>A.Texture strengthening is the key factor to improve the elastocaloric effect of alloys.At the same time,the Co_(52)V_(31)Ga_(14)Mn_(1)Ti_(2) alloy still maintains a ΔT_(ad) of -4 K without an obvious attenuation trend after 350 elastocaloric cycles under the applied stress of 300 MPa.In addition,due to the low energy dissipation(ΔW),the energy conversion efficiency of the elastocaloric response is greatly improved,so that the coefficient of performance(COP) of the Co_(52)V_(31)Ga_(14)Mn_(1)Ti_(2) alloy material is as high as 28.9,far exceeding most of the current shape memory alloy elastocaloric materials.As a result,the co-doping of Mn and Ti elements makes it possible to prepare an elastocaloric refrigeration alloy with low applied stress and a large elastocaloric effect.展开更多
We investigated the emission properties of Eu^(3+)-doped GdNbO_(4)-based oxide phosphors,aiming at improving the Eu^(3+)emission by codoping of Bi^(3+)and Li^(+).Eu^(3+)singly doped,Eu^(3+)and Bi^(3+)doubly doped,and ...We investigated the emission properties of Eu^(3+)-doped GdNbO_(4)-based oxide phosphors,aiming at improving the Eu^(3+)emission by codoping of Bi^(3+)and Li^(+).Eu^(3+)singly doped,Eu^(3+)and Bi^(3+)doubly doped,and Eu^(3+),Bi^(3+),and Li^(+)triply doped GdNbO_(4)were prepared using a high-temperature solid-state reaction method.The red-orange emissions from Eu^(3+)in the singly doped samples are significantly improved by the codoping of Bi^(3+),mainly due to the energy transfer from Bi^(3+)to Eu^(3+).The additional codoping of Li^(+)is found to increase the Eu^(3+)emission significantly.This improvement might be attributed to the increase in the photoluminescent quantum yield originating from larger grain sizes and better crystallinity.A detailed analysis of the X-ray diffraction pattern and the asymmetric ratio estimated from the photoluminescence spectra show that the local lattice environment around Eu^(3+)in GdNbO_(4)does not change significantly with the codoping of Bi^(3+)and Li^(+).Our results indicate that Li^(+)doping is a promising way to improve the emission properties of rare-earth ion-doped GdNbO_(4)phosphors.展开更多
Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promisin...Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies.展开更多
Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical c...Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics.展开更多
The incorporation of heteroatoms into carbon aerogels(CAs)can lead to structural distortions and changes in active sites due to their smaller size and electronegativity compared to pure carbon.However,the evolution of...The incorporation of heteroatoms into carbon aerogels(CAs)can lead to structural distortions and changes in active sites due to their smaller size and electronegativity compared to pure carbon.However,the evolution of the electronic structure from single-atom doping to heteroatom codoping in CAs has not yet been thoroughly investigated,and the impact of codoping on potassium ion(K+)storage and diffusion pathways as electrode material remains unclear.In this study,experimental and theoretical simulations were conducted to demonstrate that heteroatom codoping,composed of multiple heteroatoms(O/N/B)with different properties,has the potential to improve the electrical properties and stability of CAs compared to single-atom doping.Electronic states near the Fermi level have revealed that doping with O/N/B generates a greater number of active centers on adjacent carbon atoms than doping with O and O/N atoms.As a result of synergy with enhanced wetting ability(contact angle of 9.26°)derived from amino groups and hierarchical porous structure,ON-CA has the most optimized adsorption capacity(−1.62 eV)and diffusion barrier(0.12 eV)of K^(+).The optimal pathway of K^(+)in ON-CA is along the carbon ring with N or O doping.As K^(+)storage material for supercapacitors and ion batteries,it shows an outstanding specific capacity and capacitance,electrochemical stability,and rate performance.Especially,the assembled symmetrical K^(+)supercapacitor demonstrates an energy density of 51.8 Wh kg^(−1),an ultrahigh power density of 443Wkg^(−1),and outstanding cycling stability(maintaining 83.3%after 10,000 cycles in 1M KPF6 organic electrolyte).This research provides valuable insights into the design of highperformance potassium ion storage materials.展开更多
The cerium (Ce3+) doped yttrium aluminium borate (YAB) phosphor was synthesized by modified solid state reaction. The phosphor's phase purity and its emission properties were studied using powder X-ray diffracti...The cerium (Ce3+) doped yttrium aluminium borate (YAB) phosphor was synthesized by modified solid state reaction. The phosphor's phase purity and its emission properties were studied using powder X-ray diffraction pattern and photoluminescence spectroscopy. The synthesized YAB had rhomobohedral crystal structure. The phosphor had two different excitation and emission spectra. By 325 nm excitation, the phosphor had emission at 373 nm and with 363 nm excitation; the phosphor gave violet-blue emission at 418 nm. The UV emission of the phosphor originated due to Ce3+ ions at the yttrium site and violet-blue emission owing to Ce3+ ions at non-regular sites viz., A13+ and interstitial sites. The emission intensity of the phosphor was enhanced when monovalent ions (K+, Na+, and F) were added as co-dopants. The crucial role of ionic radii of monovalent co-dopants on the emission enhancement of the YAB:Ce3+ phosphor was reported. Thermogravimetric study showed that the YAB possessed high thermal stability at up to 900 ℃.展开更多
The 3μm laser emission of Er 3+ ( 4 I 11/2 → 4 I 13/2 )in the YAG crystal is,in principle,selfsaturation transition,the lifetime of the upper laser level( 4 I 11/2 )being smaller than that of the olwer one( 4 I 13/2...The 3μm laser emission of Er 3+ ( 4 I 11/2 → 4 I 13/2 )in the YAG crystal is,in principle,selfsaturation transition,the lifetime of the upper laser level( 4 I 11/2 )being smaller than that of the olwer one( 4 I 13/2 ).The effect of the selfsaturation limit the laser output. In present work,for the first time,we report on the investigation of the utility of Pr 3+ as a sensitizer of Er 3+ ion,using Pr 3+ 4 f 2-4 f5d transition.The radiation emission from 4f5d configuration of Pr 3+ ion have been observed in the YAG∶Pr 3+ crystal.This shows that under suitable conditions this radiant process can compete successfully by non radiative decay to the 4 f configuration.Using Er 3+ Pr 3 codoped YAG it is possible to predict the position of the lowest 4 f 2-4 f5d absorption bands of Pr 3+ ion in the ultraviolet range and to present the occurrence of the energy transfer from Pr 3+ to Er 3+ ion.By xenon flash lamp pumped 2.93μm laser action in the YAG∶(Er 3+ ,Pr 3+ ) crystals was demonstrated at room temperature.展开更多
Magnetic and optical properties of ZnO co-doped with transition metal and carbon have been investigated using density functional theory based on first-principles ultrasoft pseudopoten- tial method. Upon co-doping with...Magnetic and optical properties of ZnO co-doped with transition metal and carbon have been investigated using density functional theory based on first-principles ultrasoft pseudopoten- tial method. Upon co-doping with transition metal (TM) and carbon, the calculated results show a shift in the Fermi level and a remarkable change in the covalency of ZnO. Such cases energetically favor ferromagnetic semiconductor with high Curie temperature due to p-d exchange interaction between TM ions and holes induced by C doping. The total en- ergy difference between the ferromagnetic and the antiferromagnetic configurations, spatial charge and spin density, which determine the magnetic ordering, were calculated in co-doped systems for further analysis of magnetic properties. It was also discovered that optical prop- erties in the higher energy region remain relatively unchanged while those at the low energy region are changed after the co-doping. These changes of optical properties are qualitatively explained based on the calculated electronic structure. The validity of our calculation in comparison with other theoretical predictions will further motivate the experimental inves- tigation of (TM, C) co-doped ZnO diluted magnetic semiconductors.展开更多
Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i...Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.展开更多
Codoping approach is an appealing strategy to further improve the catalytic activity of Ce-based catalysts.In the present study,Mn and/or Cu doped ceria solid solutions MnxCuyCe1-x-yO2,CuxCe1-xO2,MnxCe1-xO2 and pure C...Codoping approach is an appealing strategy to further improve the catalytic activity of Ce-based catalysts.In the present study,Mn and/or Cu doped ceria solid solutions MnxCuyCe1-x-yO2,CuxCe1-xO2,MnxCe1-xO2 and pure CeO2 were prepared by CTAB-assisted hydrothermal method for CO oxidation.XRD,SEM,EDS,BET,Raman,H2-TPR,XPS and in situ DRIFTS techniques were carried out to study the physicochemical properties and to correlate them to the activity.The doped samples maintain the cubic fluorite structure of CeO2 with high crystallinity and small crystallite size,forming Ce-based solid solutions.The obtained catalysts have large mesoporous structure with average pore size of 10-14 nm.The doped transition metal enhances the oxygen vacancies and improves reducibility of the solids.The synergistic interaction of Mn and Cu codoping induces mo re oxygen vacancies,pro moting the increase of surface adsorbed oxygen and the transfer of bulk oxygen of catalyst,thereby enhancing the catalytic activity for CO oxidation.Besides,the decomposition rate of the carbonate species which is derived from in situ DRIFTS for each catalyst can provide a measure to evaluate its catalytic activity of CO oxidation.展开更多
The impact of N-and X(X=S,Se,Te)-codoping on electronic properties of anatase TiO2 has been systematically investigated using density functional theory (DFT).The optimized geometry shows that there is large lattic...The impact of N-and X(X=S,Se,Te)-codoping on electronic properties of anatase TiO2 has been systematically investigated using density functional theory (DFT).The optimized geometry shows that there is large lattice expansion for the codoped anatase TiO2 due to large atomic radius of the codoped atom.The calculated substitution energies indicate that incorporation of X(X =S,Se,Te) into N-doped bulk TiO2 can not promote synergistic effect on N after substituting for Ti,whcreas it is bctter after substituting for O.According to the total density of states (DOS) and corresponding partial DOS (PDOS),it can be seen that substituting X(X =S,Se,Te) for O,N 2p orbital is strongly hybridized with impurity states (S 3p,Se 4p,Te 5p).After substituting X(X=S,Se,Te) for Ti,conduction band is mainly dominated by Ti 3d orbit and S 3p (Se 4p or Te 5p)-N 2p-Ti 3d hybridized states are formed.Based on Bader analysis,it can be indicated that the electron transfer is from N to X(X=S,Se,Te) if substituting X(X=S,Se,Te) for O,but it is opposite if substitute X(X=S,Se,Te) for Ti.展开更多
Pore size and distribution in carbon-based materials are regarded to be a key factor to affect the electrochemical capacitive performances of the resultant electrodes.In this study,nitrogen and oxygen codoped porous c...Pore size and distribution in carbon-based materials are regarded to be a key factor to affect the electrochemical capacitive performances of the resultant electrodes.In this study,nitrogen and oxygen codoped porous carbons(NOPCs) are fabricated based on a simple Schiff-base reaction between m-phenylenediamine and terephthalaldehyde.The NOPCs have tunable morphologies,high surface areas,abundant heteroatom doping.More importantly,the carbons show a dominant micropores of 0.5-0.8 nm,comparable to the ionic sizes of LiTFSI(Li^+0.069 nm;TFSI-0.79 nm) water-in-salt electrolyte with a high potential window of 2.2 V.Consequently,the fabricated symmetric supercapacitor gives a high energy output of 30.5 Wh/kg at 1 kW/kg,and high stability after successive 10,000 cycles with ^96.8% retention.This study provides promising potential to develop high-energy supercapacitors.展开更多
Porous C‐I codoped carbon nitride materials were synthesized by in‐situ codoping with iodized ionic liquid followed by post‐thermal treatment in air.The effects of doping content of C‐I codoping with different amo...Porous C‐I codoped carbon nitride materials were synthesized by in‐situ codoping with iodized ionic liquid followed by post‐thermal treatment in air.The effects of doping content of C‐I codoping with different amounts of ionic liquid on the structural,optical and photocatalytic properties of the samples were investigated.Characterization results show that more compact interlayer sacking can be achieved by post‐thermal treatment.Combined with C‐I codoping by insertion of ionic liquids,much enlarged surface area but optimized sp2 conjugated heterocyclic structure can be found in the catalysts.Optical and energy band analysis results evidence that the light absorptions especially in visible light region are significantly improved.Although the band gap of porous C‐I codoped samples enlarge because of the generation of porous,the negatively shifted conduction band position thermodynamically supplies stronger motivation for water reduction.Photoelectricity tests reveal that the photo‐induced electron density was increased after C‐I codoping modification.Also,the recombination rate of electron‐hole pairs is remarkably inhibited.The catalysts with moderate C‐I codoing content perform sharply enhanced photocatalytic H2 evolution activity under visible light irradiation.A H2 evolution rate of 168.2μmol/h was achieved and it was more than 9.8 times higher than pristine carbon nitride.This study demonstrates a novel non‐metal doping strategy for synthesis and optimization of polymer semiconductor with gratifying photocatalytic H2 evolution performance from water hydrolysis.展开更多
A series of La/Ce-codoped Bi2O3 composite photocatalysts were fabricated via hydrothermal–calcination process. The as-prepared products were intensively characterized by some physicochemical characterizations like N2...A series of La/Ce-codoped Bi2O3 composite photocatalysts were fabricated via hydrothermal–calcination process. The as-prepared products were intensively characterized by some physicochemical characterizations like N2 physical adsorption, X-ray powder diffraction(XRD), scanning electron microscope(SEM), transmission electron microscope(TEM), UV–Vis diffuse reflectance(UV–Vis DRS), Fourier transform infrared spectroscopy(FT-IR),photoelectrochemical measurements, and photoluminescence(PL) spectroscopy. The characterization results indicated that La and Ce doping induced obvious crystal phase transformation in Bi2O3, from monoclinic to tetragonal phase. La and Ce codoping also gave rise to the obvious synergetic effects, e.g., the lattice contraction of Bi2O3, the decrease of crystal size and the increase of surface area. The photocatalytic performance of the prepared catalysts was evaluated by removal of dye acid orange II with high concentration under visible light irradiation. Results showed that La/Ce-codoped Bi2O3 displayed much higher photocatalytic performance than that of bare Bi2O3, single La or Ce doped Bi2O3 samples. The superior photocatalytic activity was mainly attributed to the improved texture and surface properties and the synergistic effects of La and Ce codoping on suppressing the recombination of photo-generated electrons(e^-) and holes(h~+).展开更多
First-principles plane-wave pseudopotential calculations are performed to study the geometrical structures, for- mation energies, and electronic and optical properties of Y-doped, N-doped, and (Y, N)-codoped Ti02. T...First-principles plane-wave pseudopotential calculations are performed to study the geometrical structures, for- mation energies, and electronic and optical properties of Y-doped, N-doped, and (Y, N)-codoped Ti02. The calculated results show that Y and N codoping leads to lattice distortion, easier separation of photogenerated electron-hole pairs and band gap narrowing. The optical absorption spectra indicate that an obvious red-shift occurs upon Y and N codoping, which enhances visible-light photocatalytic activity.展开更多
We fabricate p-type conductive ZnO thin films on quartz glass substrates by codoping of In-N using radio frequency magnetron sputtering technique together with the direct implantation of acceptor dopants (nitrogen)....We fabricate p-type conductive ZnO thin films on quartz glass substrates by codoping of In-N using radio frequency magnetron sputtering technique together with the direct implantation of acceptor dopants (nitrogen). The effects of thermal annealing on the structure and electrical properties of the ZnO films are investigated by an x-ray diffractometer (XRD) and a Hall measurement system. It is found that the best p-type ZnO film subjected to annealed exhibits excellent electrical properties with a hole concentration of 1.22 × 10^18 cm^-3, a Hall mobility of 2.19 cm^2 V^-1 s^- 1, and a low resistivity of about 2.33 Ωcm, indicating that the presence of In may facilitates the incorporation of N into ZnO thin films.展开更多
Simultaneous elimination of As(Ⅲ) and Pb(Ⅱ) from wastewater is still a great challenge.In this work,an iron-sulfur codoped biochar (Fe/S-BC) was successfully fabricated in a simplified way and was applied to the rem...Simultaneous elimination of As(Ⅲ) and Pb(Ⅱ) from wastewater is still a great challenge.In this work,an iron-sulfur codoped biochar (Fe/S-BC) was successfully fabricated in a simplified way and was applied to the remediate the co-pollution of As(Ⅲ) and Pb(Ⅱ).The positive enthalpy indicated that the adsorption in As-Pb co-pollution was an endothermic reaction.The mechanism of As(Ⅲ) removal could be illustrated by surface complexation,oxidation and precipitation.In addition to precipitation and complexation,the elimination mechanism of Pb(Ⅱ) also contained ion exchange and electrostatic interactions.Competitive and synergistic effects existed simultaneously in the co-contamination system.The suppression of As(Ⅲ) was ascribed to competitive complexation of the two metals on Fe/S-BC,while the synergy of Pb(Ⅱ) was attributed to the formation of the PbFe2(AsO_(4))2(OH)2.Batch experiments revealed that Fe/S-BC had outstanding ability to remove As(Ⅲ) and Pb(Ⅱ),regardless of pH dependency and interference by various coexisting ions.The maximum adsorption capacities of the Fe/S-BC for As(Ⅲ) and Pb(Ⅱ) were 91.2 mg/g and 631.7 mg/g,respectively.Fe/S-BC could be treated as a novel candidate for the elimination of As(Ⅲ)-Pb(Ⅱ) combined pollution.展开更多
B2 FeA1 intermetallic compounds modified with reactive elements (REs) including Sc and Y were fabricated by vacuum arc-melting, and the isothermal oxidation behavior of the RE-doped alloys at 1373 K was investigated...B2 FeA1 intermetallic compounds modified with reactive elements (REs) including Sc and Y were fabricated by vacuum arc-melting, and the isothermal oxidation behavior of the RE-doped alloys at 1373 K was investigated. Both Sc and Y single-doping significantly decrease the alumina film growth rate of the alloys. The alumina film growth rate of Sc+ Y co-doped alloy even further reduces compared to that of the Sc and Y single-doped alloys. The synergistic effect produced by Sc+ Y codoping on the growth behavior of alumina was discussed. It could be anticipated that the combined additions of Sc and Y which have matched chemical properties might decrease the alumina film growth rate more effectively and provide FeA1 alloys with enhanced oxidation resistance.展开更多
Ce and C-S codoped mesoporous TiO_(2)nanocomposites were synthesized via a sol-gel method integrated with an evaporation-induced self-assembly approach.The basic physicochemical characteristics of the synthetic sample...Ce and C-S codoped mesoporous TiO_(2)nanocomposites were synthesized via a sol-gel method integrated with an evaporation-induced self-assembly approach.The basic physicochemical characteristics of the synthetic samples were analyzed via a series of characterization techniques.The results reveal that C-S and Ce codoping on mesoporous TiO_(2)enhances the photocatalytic activity owing to the synergistic effect caused by narrowing the band gap,enhancing adsorption,trapping and transferring the excited e^(-)/h^(+)pairs and suppressing the recombination of e^(-)/h^(+)pairs.Furthermore,the obtained C,S-TiO_(2)/CeO_(2)materials exhibit large specific surface areas and numerous pores which not only effectively improve the adsorption-enrichment capability,but also supply multi-dimensional mass and electron transfer channels.The photodegradation efficiency of RhB by C,S-TiO_(2)/CeO_(2)within 40 min is nearly 100%,and its degradation efficiency is 6.63 times that of undoped TiO_(2).Recycling experiments show that mesoporous C,S-TiO_(2)/CeO_(2)shows excellent recoverability and stability.Furthermore,by trapping experiments,·O_(2)e^(-)/h^(+)and·OH are the predominant active species and a possible reaction mechanism is proposed.展开更多
基金Project supported by the National Natural Science Foundation of China(61805134,11974229,22303044)Fundamental Research Program of Shanxi Province(202203021221121)+3 种基金China Postdoctoral Science Foundation(2022M711898)Natural Science Fo undation of Shandong Province(ZR2023QB135)Postdoctoral Innovation Project of Shandong Province(SDCX-ZG-202201004)Graduate Innovation Project in Shanxi Province(2024KY450)。
文摘Owing to their unique optical properties and nontoxicity,lead-free halide double perovskite nanocrystals are of interest for widespread applications.Herein,the colloid synthesis and photoluminescenc e property of Ag^(+)-Eu^(3+)codoped Cs_(2)NaInCl_(6)nanocrystals were investigated.The pe rovskite nanocrystals exhibit a broad warm-white photo luminescence with correlated color temperature(CCT)of 3447 K and color rendering index(CRI)of 90.2,and the means of codoping would improve its optical performance.A fast energy transfer and a long-lived self-trapped excitons state are unveiled by the femtosecond transient absorption spectra.The fast energy transfer from the self-trapped excitons of host nanocrystals to the Eu^(3+)ions is helpful to achieve a broad photoluminescence,and the quantum yield of Cs_(2)NaInCl_(6):0.05Ag^(+)-Eu^(3+)anocrystals can be enha nced to 69.5%.There is a large exciton binding energy and strong electron-phonon interaction in the codoped perovskite nanocrystals.The efficient and excellent air-stable double perovskite nanocrystals would be considered as a single-component phosphor for warm-white lighting.
基金financially supported by the National Natural Science Foundation of China(Nos.52271172 and 51971085)Heilongjiang Provincial Natural Science Foundation of China(No.LH2024E075)
文摘Co-V-Ga-based shape memory alloys have shown great potential in the field of solid-state elastocaloric refrigeration due to their low stress hysteresis(Δσ_(hys)) and excellent superelasticity.However,large applied stress and low adiabatic temperature change(ΔT_(ad)) greatly limit the application of Co-V-Ga-based alloys as elastocaloric materials.Here,we have successfully achieved a breakthrough in material properties by innovatively introducing the co-doping strategy of Mn and Ti elements.It was found that the synergistic effect of Mn and Ti significantly enhanced the mechanical properties of the Co_(52)V_(31)Ga_(14)Mn_(1)Ti_(2) alloy through solid solution strengthening,fine grain strengthening,and precipitation strengthening mechanisms.A large ΔT_(ad) of-11 K was obtained for the Co_(52)V_(31)Ga_(14)Mn_(1)Ti_(2) bulk poly crystalline alloy under a very low applied stress of 380 MPa.This is mainly due to the strong texture of <001>A.Texture strengthening is the key factor to improve the elastocaloric effect of alloys.At the same time,the Co_(52)V_(31)Ga_(14)Mn_(1)Ti_(2) alloy still maintains a ΔT_(ad) of -4 K without an obvious attenuation trend after 350 elastocaloric cycles under the applied stress of 300 MPa.In addition,due to the low energy dissipation(ΔW),the energy conversion efficiency of the elastocaloric response is greatly improved,so that the coefficient of performance(COP) of the Co_(52)V_(31)Ga_(14)Mn_(1)Ti_(2) alloy material is as high as 28.9,far exceeding most of the current shape memory alloy elastocaloric materials.As a result,the co-doping of Mn and Ti elements makes it possible to prepare an elastocaloric refrigeration alloy with low applied stress and a large elastocaloric effect.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A10044154)。
文摘We investigated the emission properties of Eu^(3+)-doped GdNbO_(4)-based oxide phosphors,aiming at improving the Eu^(3+)emission by codoping of Bi^(3+)and Li^(+).Eu^(3+)singly doped,Eu^(3+)and Bi^(3+)doubly doped,and Eu^(3+),Bi^(3+),and Li^(+)triply doped GdNbO_(4)were prepared using a high-temperature solid-state reaction method.The red-orange emissions from Eu^(3+)in the singly doped samples are significantly improved by the codoping of Bi^(3+),mainly due to the energy transfer from Bi^(3+)to Eu^(3+).The additional codoping of Li^(+)is found to increase the Eu^(3+)emission significantly.This improvement might be attributed to the increase in the photoluminescent quantum yield originating from larger grain sizes and better crystallinity.A detailed analysis of the X-ray diffraction pattern and the asymmetric ratio estimated from the photoluminescence spectra show that the local lattice environment around Eu^(3+)in GdNbO_(4)does not change significantly with the codoping of Bi^(3+)and Li^(+).Our results indicate that Li^(+)doping is a promising way to improve the emission properties of rare-earth ion-doped GdNbO_(4)phosphors.
基金Key Research and Development Program of Zhejiang,Grant/Award Number:2021C03022National Natural Science Foundation of China,Grant/Award Numbers:22002104,22272115,22202145,22202146,22102112,22202147。
文摘Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies.
基金supported by the Natural Science Foundation of Anhui Province(No.2208085J01 and No.2208085QA28).
文摘Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics.
基金financially supported by the Natural Science Foundation of China(Grant No.22005165)the Major Science and Technology Innovation Project of Shandong(Grant No.2019JZZY010507)+1 种基金the Qingdao Municipal Science and Technology Bureau(Grant No.17-1-1-86-jch)the Key Technology Research and Development Program of Shandong(Grant No.2018GGX108005).
文摘The incorporation of heteroatoms into carbon aerogels(CAs)can lead to structural distortions and changes in active sites due to their smaller size and electronegativity compared to pure carbon.However,the evolution of the electronic structure from single-atom doping to heteroatom codoping in CAs has not yet been thoroughly investigated,and the impact of codoping on potassium ion(K+)storage and diffusion pathways as electrode material remains unclear.In this study,experimental and theoretical simulations were conducted to demonstrate that heteroatom codoping,composed of multiple heteroatoms(O/N/B)with different properties,has the potential to improve the electrical properties and stability of CAs compared to single-atom doping.Electronic states near the Fermi level have revealed that doping with O/N/B generates a greater number of active centers on adjacent carbon atoms than doping with O and O/N atoms.As a result of synergy with enhanced wetting ability(contact angle of 9.26°)derived from amino groups and hierarchical porous structure,ON-CA has the most optimized adsorption capacity(−1.62 eV)and diffusion barrier(0.12 eV)of K^(+).The optimal pathway of K^(+)in ON-CA is along the carbon ring with N or O doping.As K^(+)storage material for supercapacitors and ion batteries,it shows an outstanding specific capacity and capacitance,electrochemical stability,and rate performance.Especially,the assembled symmetrical K^(+)supercapacitor demonstrates an energy density of 51.8 Wh kg^(−1),an ultrahigh power density of 443Wkg^(−1),and outstanding cycling stability(maintaining 83.3%after 10,000 cycles in 1M KPF6 organic electrolyte).This research provides valuable insights into the design of highperformance potassium ion storage materials.
文摘The cerium (Ce3+) doped yttrium aluminium borate (YAB) phosphor was synthesized by modified solid state reaction. The phosphor's phase purity and its emission properties were studied using powder X-ray diffraction pattern and photoluminescence spectroscopy. The synthesized YAB had rhomobohedral crystal structure. The phosphor had two different excitation and emission spectra. By 325 nm excitation, the phosphor had emission at 373 nm and with 363 nm excitation; the phosphor gave violet-blue emission at 418 nm. The UV emission of the phosphor originated due to Ce3+ ions at the yttrium site and violet-blue emission owing to Ce3+ ions at non-regular sites viz., A13+ and interstitial sites. The emission intensity of the phosphor was enhanced when monovalent ions (K+, Na+, and F) were added as co-dopants. The crucial role of ionic radii of monovalent co-dopants on the emission enhancement of the YAB:Ce3+ phosphor was reported. Thermogravimetric study showed that the YAB possessed high thermal stability at up to 900 ℃.
文摘The 3μm laser emission of Er 3+ ( 4 I 11/2 → 4 I 13/2 )in the YAG crystal is,in principle,selfsaturation transition,the lifetime of the upper laser level( 4 I 11/2 )being smaller than that of the olwer one( 4 I 13/2 ).The effect of the selfsaturation limit the laser output. In present work,for the first time,we report on the investigation of the utility of Pr 3+ as a sensitizer of Er 3+ ion,using Pr 3+ 4 f 2-4 f5d transition.The radiation emission from 4f5d configuration of Pr 3+ ion have been observed in the YAG∶Pr 3+ crystal.This shows that under suitable conditions this radiant process can compete successfully by non radiative decay to the 4 f configuration.Using Er 3+ Pr 3 codoped YAG it is possible to predict the position of the lowest 4 f 2-4 f5d absorption bands of Pr 3+ ion in the ultraviolet range and to present the occurrence of the energy transfer from Pr 3+ to Er 3+ ion.By xenon flash lamp pumped 2.93μm laser action in the YAG∶(Er 3+ ,Pr 3+ ) crystals was demonstrated at room temperature.
文摘Magnetic and optical properties of ZnO co-doped with transition metal and carbon have been investigated using density functional theory based on first-principles ultrasoft pseudopoten- tial method. Upon co-doping with transition metal (TM) and carbon, the calculated results show a shift in the Fermi level and a remarkable change in the covalency of ZnO. Such cases energetically favor ferromagnetic semiconductor with high Curie temperature due to p-d exchange interaction between TM ions and holes induced by C doping. The total en- ergy difference between the ferromagnetic and the antiferromagnetic configurations, spatial charge and spin density, which determine the magnetic ordering, were calculated in co-doped systems for further analysis of magnetic properties. It was also discovered that optical prop- erties in the higher energy region remain relatively unchanged while those at the low energy region are changed after the co-doping. These changes of optical properties are qualitatively explained based on the calculated electronic structure. The validity of our calculation in comparison with other theoretical predictions will further motivate the experimental inves- tigation of (TM, C) co-doped ZnO diluted magnetic semiconductors.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.11034006, No.21273208, and No.21473168), the Anhui Provincial Natural Sci- ence Foundation (No.1408085QB26), the hmdamental Research Funds for the Central Universities, the China Postdoctoral Science Foundation (No.2012M511409), and the Supercomputing Center of Chinese Academy of Sciences, Shanghai and USTC Supercomputer Cen- ters.
文摘Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.
基金Project supported by the National Natural Science Foundation of China(21777055)Shandong Provincial Natural Science Foundation(ZR2017BB004)+1 种基金Shandong Province Key Research and Development Plan(2017GGX202004)Shandong Province Major Science and Technology Innovation Project(2017CXGC1004)
文摘Codoping approach is an appealing strategy to further improve the catalytic activity of Ce-based catalysts.In the present study,Mn and/or Cu doped ceria solid solutions MnxCuyCe1-x-yO2,CuxCe1-xO2,MnxCe1-xO2 and pure CeO2 were prepared by CTAB-assisted hydrothermal method for CO oxidation.XRD,SEM,EDS,BET,Raman,H2-TPR,XPS and in situ DRIFTS techniques were carried out to study the physicochemical properties and to correlate them to the activity.The doped samples maintain the cubic fluorite structure of CeO2 with high crystallinity and small crystallite size,forming Ce-based solid solutions.The obtained catalysts have large mesoporous structure with average pore size of 10-14 nm.The doped transition metal enhances the oxygen vacancies and improves reducibility of the solids.The synergistic interaction of Mn and Cu codoping induces mo re oxygen vacancies,pro moting the increase of surface adsorbed oxygen and the transfer of bulk oxygen of catalyst,thereby enhancing the catalytic activity for CO oxidation.Besides,the decomposition rate of the carbonate species which is derived from in situ DRIFTS for each catalyst can provide a measure to evaluate its catalytic activity of CO oxidation.
基金Natural Science Foundation of Shanxi Province(No.2009011014)
文摘The impact of N-and X(X=S,Se,Te)-codoping on electronic properties of anatase TiO2 has been systematically investigated using density functional theory (DFT).The optimized geometry shows that there is large lattice expansion for the codoped anatase TiO2 due to large atomic radius of the codoped atom.The calculated substitution energies indicate that incorporation of X(X =S,Se,Te) into N-doped bulk TiO2 can not promote synergistic effect on N after substituting for Ti,whcreas it is bctter after substituting for O.According to the total density of states (DOS) and corresponding partial DOS (PDOS),it can be seen that substituting X(X =S,Se,Te) for O,N 2p orbital is strongly hybridized with impurity states (S 3p,Se 4p,Te 5p).After substituting X(X=S,Se,Te) for Ti,conduction band is mainly dominated by Ti 3d orbit and S 3p (Se 4p or Te 5p)-N 2p-Ti 3d hybridized states are formed.Based on Bader analysis,it can be indicated that the electron transfer is from N to X(X=S,Se,Te) if substituting X(X=S,Se,Te) for O,but it is opposite if substitute X(X=S,Se,Te) for Ti.
基金financially supported by the National Natural Science Foundation of China(Nos.21875165,51772216 and 21703161)the Science and Technology Commission of Shanghai Municipality,China(No.14DZ2261100)the Fundamental Research Funds for the Central Universities。
文摘Pore size and distribution in carbon-based materials are regarded to be a key factor to affect the electrochemical capacitive performances of the resultant electrodes.In this study,nitrogen and oxygen codoped porous carbons(NOPCs) are fabricated based on a simple Schiff-base reaction between m-phenylenediamine and terephthalaldehyde.The NOPCs have tunable morphologies,high surface areas,abundant heteroatom doping.More importantly,the carbons show a dominant micropores of 0.5-0.8 nm,comparable to the ionic sizes of LiTFSI(Li^+0.069 nm;TFSI-0.79 nm) water-in-salt electrolyte with a high potential window of 2.2 V.Consequently,the fabricated symmetric supercapacitor gives a high energy output of 30.5 Wh/kg at 1 kW/kg,and high stability after successive 10,000 cycles with ^96.8% retention.This study provides promising potential to develop high-energy supercapacitors.
基金the National Natural Science Foundation of China(21503096,21407067)the Natural Science Foundation of Jiangsu Province(BK20140506)~~
文摘Porous C‐I codoped carbon nitride materials were synthesized by in‐situ codoping with iodized ionic liquid followed by post‐thermal treatment in air.The effects of doping content of C‐I codoping with different amounts of ionic liquid on the structural,optical and photocatalytic properties of the samples were investigated.Characterization results show that more compact interlayer sacking can be achieved by post‐thermal treatment.Combined with C‐I codoping by insertion of ionic liquids,much enlarged surface area but optimized sp2 conjugated heterocyclic structure can be found in the catalysts.Optical and energy band analysis results evidence that the light absorptions especially in visible light region are significantly improved.Although the band gap of porous C‐I codoped samples enlarge because of the generation of porous,the negatively shifted conduction band position thermodynamically supplies stronger motivation for water reduction.Photoelectricity tests reveal that the photo‐induced electron density was increased after C‐I codoping modification.Also,the recombination rate of electron‐hole pairs is remarkably inhibited.The catalysts with moderate C‐I codoing content perform sharply enhanced photocatalytic H2 evolution activity under visible light irradiation.A H2 evolution rate of 168.2μmol/h was achieved and it was more than 9.8 times higher than pristine carbon nitride.This study demonstrates a novel non‐metal doping strategy for synthesis and optimization of polymer semiconductor with gratifying photocatalytic H2 evolution performance from water hydrolysis.
基金supported by the National Natural Science Foundation of China (Nos. 21567008, 21607064, 21263005)the Natural Science Foundation of Jiangxi Province (No. 20161BAB203090)the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology,the Landing Project of Science and Technology of Colleges and Universities in Jiangxi Province China (No. KJLD14046)
文摘A series of La/Ce-codoped Bi2O3 composite photocatalysts were fabricated via hydrothermal–calcination process. The as-prepared products were intensively characterized by some physicochemical characterizations like N2 physical adsorption, X-ray powder diffraction(XRD), scanning electron microscope(SEM), transmission electron microscope(TEM), UV–Vis diffuse reflectance(UV–Vis DRS), Fourier transform infrared spectroscopy(FT-IR),photoelectrochemical measurements, and photoluminescence(PL) spectroscopy. The characterization results indicated that La and Ce doping induced obvious crystal phase transformation in Bi2O3, from monoclinic to tetragonal phase. La and Ce codoping also gave rise to the obvious synergetic effects, e.g., the lattice contraction of Bi2O3, the decrease of crystal size and the increase of surface area. The photocatalytic performance of the prepared catalysts was evaluated by removal of dye acid orange II with high concentration under visible light irradiation. Results showed that La/Ce-codoped Bi2O3 displayed much higher photocatalytic performance than that of bare Bi2O3, single La or Ce doped Bi2O3 samples. The superior photocatalytic activity was mainly attributed to the improved texture and surface properties and the synergistic effects of La and Ce codoping on suppressing the recombination of photo-generated electrons(e^-) and holes(h~+).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10647008, 50971099, and 21176199)the Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20096101110017 and 20096101110013)+1 种基金the Key Project of the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2010JZ002 and 2011JM1001)the Graduate Innovation Fund of Northwest University, China (Grant No. 10YZZ38)
文摘First-principles plane-wave pseudopotential calculations are performed to study the geometrical structures, for- mation energies, and electronic and optical properties of Y-doped, N-doped, and (Y, N)-codoped Ti02. The calculated results show that Y and N codoping leads to lattice distortion, easier separation of photogenerated electron-hole pairs and band gap narrowing. The optical absorption spectra indicate that an obvious red-shift occurs upon Y and N codoping, which enhances visible-light photocatalytic activity.
基金Supported by the Natural Science Foundation of Chongqing City under Grant No AC4034, and Education Commission of Chongqing City under Grant No KJ050812.
文摘We fabricate p-type conductive ZnO thin films on quartz glass substrates by codoping of In-N using radio frequency magnetron sputtering technique together with the direct implantation of acceptor dopants (nitrogen). The effects of thermal annealing on the structure and electrical properties of the ZnO films are investigated by an x-ray diffractometer (XRD) and a Hall measurement system. It is found that the best p-type ZnO film subjected to annealed exhibits excellent electrical properties with a hole concentration of 1.22 × 10^18 cm^-3, a Hall mobility of 2.19 cm^2 V^-1 s^- 1, and a low resistivity of about 2.33 Ωcm, indicating that the presence of In may facilitates the incorporation of N into ZnO thin films.
基金supported by the National Key Research and Development Program of China (No. 2018YFC1802803)the National Natural Science Foundation of China (No. 21677041)the Science and Technology Project of Guangzhou City, China (No. 202103000018)。
文摘Simultaneous elimination of As(Ⅲ) and Pb(Ⅱ) from wastewater is still a great challenge.In this work,an iron-sulfur codoped biochar (Fe/S-BC) was successfully fabricated in a simplified way and was applied to the remediate the co-pollution of As(Ⅲ) and Pb(Ⅱ).The positive enthalpy indicated that the adsorption in As-Pb co-pollution was an endothermic reaction.The mechanism of As(Ⅲ) removal could be illustrated by surface complexation,oxidation and precipitation.In addition to precipitation and complexation,the elimination mechanism of Pb(Ⅱ) also contained ion exchange and electrostatic interactions.Competitive and synergistic effects existed simultaneously in the co-contamination system.The suppression of As(Ⅲ) was ascribed to competitive complexation of the two metals on Fe/S-BC,while the synergy of Pb(Ⅱ) was attributed to the formation of the PbFe2(AsO_(4))2(OH)2.Batch experiments revealed that Fe/S-BC had outstanding ability to remove As(Ⅲ) and Pb(Ⅱ),regardless of pH dependency and interference by various coexisting ions.The maximum adsorption capacities of the Fe/S-BC for As(Ⅲ) and Pb(Ⅱ) were 91.2 mg/g and 631.7 mg/g,respectively.Fe/S-BC could be treated as a novel candidate for the elimination of As(Ⅲ)-Pb(Ⅱ) combined pollution.
基金financially supported by the Basic Research Program of State Grid (No.GCB17201500188)
文摘B2 FeA1 intermetallic compounds modified with reactive elements (REs) including Sc and Y were fabricated by vacuum arc-melting, and the isothermal oxidation behavior of the RE-doped alloys at 1373 K was investigated. Both Sc and Y single-doping significantly decrease the alumina film growth rate of the alloys. The alumina film growth rate of Sc+ Y co-doped alloy even further reduces compared to that of the Sc and Y single-doped alloys. The synergistic effect produced by Sc+ Y codoping on the growth behavior of alumina was discussed. It could be anticipated that the combined additions of Sc and Y which have matched chemical properties might decrease the alumina film growth rate more effectively and provide FeA1 alloys with enhanced oxidation resistance.
基金Project supported by the National Natural Science Foundation of China(41831285,51974261)Doctoral Research Initiation Project(YBZ202127)from Xichang University。
文摘Ce and C-S codoped mesoporous TiO_(2)nanocomposites were synthesized via a sol-gel method integrated with an evaporation-induced self-assembly approach.The basic physicochemical characteristics of the synthetic samples were analyzed via a series of characterization techniques.The results reveal that C-S and Ce codoping on mesoporous TiO_(2)enhances the photocatalytic activity owing to the synergistic effect caused by narrowing the band gap,enhancing adsorption,trapping and transferring the excited e^(-)/h^(+)pairs and suppressing the recombination of e^(-)/h^(+)pairs.Furthermore,the obtained C,S-TiO_(2)/CeO_(2)materials exhibit large specific surface areas and numerous pores which not only effectively improve the adsorption-enrichment capability,but also supply multi-dimensional mass and electron transfer channels.The photodegradation efficiency of RhB by C,S-TiO_(2)/CeO_(2)within 40 min is nearly 100%,and its degradation efficiency is 6.63 times that of undoped TiO_(2).Recycling experiments show that mesoporous C,S-TiO_(2)/CeO_(2)shows excellent recoverability and stability.Furthermore,by trapping experiments,·O_(2)e^(-)/h^(+)and·OH are the predominant active species and a possible reaction mechanism is proposed.