Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa...Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.展开更多
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working...This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.展开更多
This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and no...This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and non-vanishing uncertainties make the prescribed-time control problem become much more nontrivial. The solution to address the challenges mentioned above involves incorporating a prescribed-time filter, as opposed to a finite-time filter, and formulating a prescribed-time Lyapunov stability lemma(Lemma 5). The prescribed-time Lyapunov stability lemma is based on time axis shifting time-varying yet bounded gain, which establishes a novel link between the fixed-time and prescribed-time control method. This allows the restriction condition that the time-varying gain function must satisfy as imposed in most exist prescribed-time control works to be removed. Under the proposed control method, the desire trajectory is ensured to closely track the output of the system in prescribed time. The effectiveness of the theoretical results are verified through numerical simulation.展开更多
Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the p...Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.展开更多
This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
Graphene platelets(GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams.Further bonding piezoelectric actuator and sensor layers on ...Graphene platelets(GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams.Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control,greatly expanding their applications in the aerospace industry.For the first time,this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surfacebonded piezoelectric layers.The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors.The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied.The Newmark-βmethod combined with Newton's iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads,impact loads,and moving loads.Additionally,special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam.展开更多
In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that globa...In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.展开更多
A dual-harmonic acceleration system is utilized to mitigate the space-charge effect in the rapid-cycling synchrotron of the China Spallation Neutron Source upgrade project(CSNS-II).A magnetic alloy(MA)-loaded cavity w...A dual-harmonic acceleration system is utilized to mitigate the space-charge effect in the rapid-cycling synchrotron of the China Spallation Neutron Source upgrade project(CSNS-II).A magnetic alloy(MA)-loaded cavity with a high accelerating gradient is developed to satisfy the requirements of dual-harmonic acceleration and provide the necessary second-harmonic cavity voltage.However,the MA-loaded cavity exhibits a wideband frequency response,resulting in numerous higher harmonics in the radio-frequency(RF)voltage.These higher harmonics are caused by both the beam-loading effect and distorted amplifier current,which distort the RF bucket,increase the power dissipation in the cavity,and lower the gradient.To address these issues,a multiharmonic independent feedback-control approach is implemented to compensate for higher harmonics.The effectiveness of this control strategy is validated experimentally.This study provides details regarding the feedback-control design and presents the commissioning results.展开更多
This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems posses...This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective.展开更多
In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of ...In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements.展开更多
This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinea...This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinear terms are dominated by upper triangular linear unmeasured (delayed) states multiplied by unknown growth rate. The unknown growth rate is composed of an unknown constant, a power function of output, and an input function. Furthermore, due to the measurement uncertainty of the system output, it is more difficult to solve this problem. It is proved that the presented output feedback controller can globally regulate all states of the nonlinear systems using the dynamic gain scaling technique and choosing the appropriate Lyapunov–Krasovskii functionals.展开更多
A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EA...A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EAST tokamak.The feedback control system includes four main parts:the impurity powder dropper(IPD),a diagnostic system measuring fuel recycling level represented by D_(α)emission,a plasma control system(PCS)implementing the Proportional Integral Derivative(PID)algorithm,and a signal converter connecting the IPD and PCS.Based on this control system,both active control and feedback control experiments have recently been performed on EAST with a full metal wall.The experimental results show that the fuel recycling can be gradually reduced to lower level as PCS control voltage increases.In the feedback control experiments,it is also observed that the D_(α)emission is reduced to the level below the target D_(α)value by adjusting boron injection flow rate,indicating successful implementation of the fuel recycling feedback control on EAST.This technique provides a new method for fuel recycling control of long pulse and high parameter plasma operations in future fusion devices.展开更多
Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish ...Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish.Here,we develop an untethered robotic manta as an experimental platform,which consists of two flexible pectoral fins and a tail fin,with three infrared sensors installed on the front,left,and right sides of the head to sense the surrounding obstacles.To generate multiple swimming modes of the robotic manta and online switching of different modes,we design a closed-loop Central Pattern Generator(CPG)controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle.To verify the autonomous swimming ability of the robotic manta in complex scenes,we design an experimental scenario with a concave obstacle.The experimental results show that the robotic manta can achieve forward swimming,backward swimming,in situ turning within the concave obstacle,and finally exit from the area safely while relying on the perception of external obstacles,which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish.Finally,the swimming ability of the robotic manta is verified by field tests.展开更多
In the past few decades,people have been trying to address the issue of walking instability in bipedal robots in uncertain environments.However,most control methods currently have still failed to achieve robust walkin...In the past few decades,people have been trying to address the issue of walking instability in bipedal robots in uncertain environments.However,most control methods currently have still failed to achieve robust walking of bipedal robots under uncertain disturbances.Existing research mostly focuses on motion control methods for robots on uneven terrain and under sudden impact forces,with little consideration for the problem of continuous and intense external force disturbances in uncertain environments.In response to this issue,a disturbance-robust control method based on adaptive feedback compensation is proposed.First,based on the Lagrangian method,the dynamic model of a bipedal robot under different types of external force disturbances was established.Subsequently,through dynamic analysis,it was observed that classical control methods based on hybrid zero dynamics failed to consider the continuous and significant external force disturbances in uncertain environments.Therefore,an adaptive feedback compensation controller was designed,and an adaptive parameter adjustment optimization algorithm was proposed based on walking constraints to achieve stable walking of bipedal robots under different external force disturbances.Finally,in numerical simulation experiments,comparative analysis revealed that using only a controller based on hybrid zero dynamics was insufficient to converge the motion of a planar five-link bipedal robot subjected to periodic forces or bounded noise disturbances to a stable state.In contrast,in the adaptive feedback compensation control method,the use of an adaptive parameter adjustment optimization algorithm to generate time-varying control parameters successfully achieved stable walking of the robot under these disturbances.This indicates the effectiveness of the adaptive parameter adjustment algorithm and the robustness of the adaptive feedback compensation control method.展开更多
This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SF...For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.展开更多
In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign...In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.展开更多
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys...This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.展开更多
In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabili...In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabilization condition of the linear system, one linear feedback controller is structured to control the chaotic system without time-delay, its chaotic behavior is eliminated and stabilized to its equilibrium. After that, based on the first-order approximation method, the Lyapunov stability theorem, and the matrix inequality theory, the other linear feedback controller is structured to control the chaotic system with time-delay and make it stabilized at its equilibrium. Finally, two numerical examples are given to illustrate the correctness and effectiveness of the two linear feedback controllers.展开更多
基金supported by National Key Research and Development Program of China(Grant No.2023YFB4604100)National Key Research and Development Program of China(Grant No.2022YFB3806104)+4 种基金Key Research and Development Program in Shaanxi Province(Grant No.2021LLRH-08-17)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001)K C Wong Education Foundation of ChinaYouth Innovation Team of Shaanxi Universities of ChinaKey Research and Development Program of Shaanxi Province(Grant 2021LLRH-08-3.1).
文摘Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.
基金supported by Liaoning Provincial Department of Education 2023 Basic Research Projects for Universities and Colleges(Grant No.JYTQN2023131)Liaoning Provincial Science and Technology Program:Cooperative Control and Recognition of Unmanned Vessels for Fishing Vessel Operation Scenarios(Grant No.600024003)Liaoning Provincial Department of Education Scientific Research Funding Project(Grant No.LJKZ0726).
文摘This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61991400/61991403,61933012,62250710167,62203078)+2 种基金Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0588)the Central University Project(2023CDJKYJH047)the Innovation Support Program for International Students Returning to China(cx2022016)
文摘This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and non-vanishing uncertainties make the prescribed-time control problem become much more nontrivial. The solution to address the challenges mentioned above involves incorporating a prescribed-time filter, as opposed to a finite-time filter, and formulating a prescribed-time Lyapunov stability lemma(Lemma 5). The prescribed-time Lyapunov stability lemma is based on time axis shifting time-varying yet bounded gain, which establishes a novel link between the fixed-time and prescribed-time control method. This allows the restriction condition that the time-varying gain function must satisfy as imposed in most exist prescribed-time control works to be removed. Under the proposed control method, the desire trajectory is ensured to closely track the output of the system in prescribed time. The effectiveness of the theoretical results are verified through numerical simulation.
基金supported by the Opening Foundation of China National Logging Corporation(CNLC20229C06)the China Petroleum Technical Service Corporation's science project'Development and application of 475 rotary steering system'(2024T-001001)。
文摘Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Nos.12102015 and 12472003)the R&D Program of Beijing Municipal Education Commission of China(No.KM202110005030)。
文摘Graphene platelets(GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams.Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control,greatly expanding their applications in the aerospace industry.For the first time,this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surfacebonded piezoelectric layers.The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors.The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied.The Newmark-βmethod combined with Newton's iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads,impact loads,and moving loads.Additionally,special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam.
基金supported by the Zhejiang Provincial Natural Science Foundation(LY24F030011,LY23F030005)the National Natural Science Foundation of China(62373131).
文摘In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.
基金supported by the National Natural Science Foundation of China(Nos.11875270 and 12205317)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2018015)。
文摘A dual-harmonic acceleration system is utilized to mitigate the space-charge effect in the rapid-cycling synchrotron of the China Spallation Neutron Source upgrade project(CSNS-II).A magnetic alloy(MA)-loaded cavity with a high accelerating gradient is developed to satisfy the requirements of dual-harmonic acceleration and provide the necessary second-harmonic cavity voltage.However,the MA-loaded cavity exhibits a wideband frequency response,resulting in numerous higher harmonics in the radio-frequency(RF)voltage.These higher harmonics are caused by both the beam-loading effect and distorted amplifier current,which distort the RF bucket,increase the power dissipation in the cavity,and lower the gradient.To address these issues,a multiharmonic independent feedback-control approach is implemented to compensate for higher harmonics.The effectiveness of this control strategy is validated experimentally.This study provides details regarding the feedback-control design and presents the commissioning results.
基金supported by the fund of Beijing Municipal Commission of Education(KM202210017001 and 22019821001)the Natural Science Foundation of Henan Province(222300420253).
文摘This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective.
基金partially supported by National Natura Science Foundation of China (62350710214, U23A20325)Shenzhen Key Laboratory of Control Theory and Intelligent Systems (ZDSYS20220330161800001)。
文摘In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements.
基金supported by the fund of Beijing Municipal Commission of Education(Nos.22019821001 and KM202210017001)the Natural Science Foundation of Henan Province(No.222300420253).
文摘This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinear terms are dominated by upper triangular linear unmeasured (delayed) states multiplied by unknown growth rate. The unknown growth rate is composed of an unknown constant, a power function of output, and an input function. Furthermore, due to the measurement uncertainty of the system output, it is more difficult to solve this problem. It is proved that the presented output feedback controller can globally regulate all states of the nonlinear systems using the dynamic gain scaling technique and choosing the appropriate Lyapunov–Krasovskii functionals.
基金funded by the National Key Research and Development Program of China(Nos.2022YFE03130000 and 2022YFE03130003)National Natural Science Foundation of China(Nos.12205336 and 12475208)+2 种基金The Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB0790102)the Provincial Natural Science Foundation of Anhui(No.2408085J002)Interdisciplinary and Collaborative Teams of CAS。
文摘A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EAST tokamak.The feedback control system includes four main parts:the impurity powder dropper(IPD),a diagnostic system measuring fuel recycling level represented by D_(α)emission,a plasma control system(PCS)implementing the Proportional Integral Derivative(PID)algorithm,and a signal converter connecting the IPD and PCS.Based on this control system,both active control and feedback control experiments have recently been performed on EAST with a full metal wall.The experimental results show that the fuel recycling can be gradually reduced to lower level as PCS control voltage increases.In the feedback control experiments,it is also observed that the D_(α)emission is reduced to the level below the target D_(α)value by adjusting boron injection flow rate,indicating successful implementation of the fuel recycling feedback control on EAST.This technique provides a new method for fuel recycling control of long pulse and high parameter plasma operations in future fusion devices.
基金supported by the National Key Research and Development Program(Grant No.2020YFB1313200,2022YFC2805200)the National Natural Science Foundation of China(Grant No.52001260,52201381)Ningbo Natural Science Foundation(Grant No.2022J062).
文摘Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish.Here,we develop an untethered robotic manta as an experimental platform,which consists of two flexible pectoral fins and a tail fin,with three infrared sensors installed on the front,left,and right sides of the head to sense the surrounding obstacles.To generate multiple swimming modes of the robotic manta and online switching of different modes,we design a closed-loop Central Pattern Generator(CPG)controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle.To verify the autonomous swimming ability of the robotic manta in complex scenes,we design an experimental scenario with a concave obstacle.The experimental results show that the robotic manta can achieve forward swimming,backward swimming,in situ turning within the concave obstacle,and finally exit from the area safely while relying on the perception of external obstacles,which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish.Finally,the swimming ability of the robotic manta is verified by field tests.
基金supported by the National Natural Science Foundation of China(Grant No.12332003)CIE-Tencent Robotics X Rhino-Bird Focused Research Program,and Zhejiang Provincial Natural Science Foundation of China(Grant No.LY23E050010).
文摘In the past few decades,people have been trying to address the issue of walking instability in bipedal robots in uncertain environments.However,most control methods currently have still failed to achieve robust walking of bipedal robots under uncertain disturbances.Existing research mostly focuses on motion control methods for robots on uneven terrain and under sudden impact forces,with little consideration for the problem of continuous and intense external force disturbances in uncertain environments.In response to this issue,a disturbance-robust control method based on adaptive feedback compensation is proposed.First,based on the Lagrangian method,the dynamic model of a bipedal robot under different types of external force disturbances was established.Subsequently,through dynamic analysis,it was observed that classical control methods based on hybrid zero dynamics failed to consider the continuous and significant external force disturbances in uncertain environments.Therefore,an adaptive feedback compensation controller was designed,and an adaptive parameter adjustment optimization algorithm was proposed based on walking constraints to achieve stable walking of bipedal robots under different external force disturbances.Finally,in numerical simulation experiments,comparative analysis revealed that using only a controller based on hybrid zero dynamics was insufficient to converge the motion of a planar five-link bipedal robot subjected to periodic forces or bounded noise disturbances to a stable state.In contrast,in the adaptive feedback compensation control method,the use of an adaptive parameter adjustment optimization algorithm to generate time-varying control parameters successfully achieved stable walking of the robot under these disturbances.This indicates the effectiveness of the adaptive parameter adjustment algorithm and the robustness of the adaptive feedback compensation control method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金supported by the National Natural Science Foundation of China(62473354).
文摘For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.
基金Project supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12172323,12132013+1 种基金12332003)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
基金supported in part by the National Science Fund for Excellent Young Scholars of China(62222317)the National Science Foundation of China(62303492)+3 种基金the Major Science and Technology Projects in Hunan Province(2021GK1030)the Science and Technology Innovation Program of Hunan Province(2022WZ1001)the Key Research and Development Program of Hunan Province(2023GK2023)the Fundamental Research Funds for the Central Universities of Central South University(2024ZZTS0116)。
文摘This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.
基金Supported by the National Natural Science Foundation of China (61863022)the Natural Science Foundation of Gansu Province(20JR10RA329)Scientific Research and Innovation Fund Project of Gansu University of Chinese Medicine in 2019 (2019KCYB-10)。
文摘In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabilization condition of the linear system, one linear feedback controller is structured to control the chaotic system without time-delay, its chaotic behavior is eliminated and stabilized to its equilibrium. After that, based on the first-order approximation method, the Lyapunov stability theorem, and the matrix inequality theory, the other linear feedback controller is structured to control the chaotic system with time-delay and make it stabilized at its equilibrium. Finally, two numerical examples are given to illustrate the correctness and effectiveness of the two linear feedback controllers.