期刊文献+
共找到13,267篇文章
< 1 2 250 >
每页显示 20 50 100
船海学术语篇摘要中名词词组形式表征的认知分析——以“Classifier +Thing”为例
1
作者 田苗 张宇新 《山东外语教学》 北大核心 2025年第3期19-29,共11页
“Classifier+Thing”结构在船海学术语篇摘要中俯拾皆是,其认知路径和理据亟待深入探究。本研究聚焦“Classifier+Thing”名词词组,分析船海学术语篇摘要中该词组的认知路径及理据。研究发现:(1)“Classifier+Thing”在概念结构-语义... “Classifier+Thing”结构在船海学术语篇摘要中俯拾皆是,其认知路径和理据亟待深入探究。本研究聚焦“Classifier+Thing”名词词组,分析船海学术语篇摘要中该词组的认知路径及理据。研究发现:(1)“Classifier+Thing”在概念结构-语义层的认知过程体现了语法转喻机制,船海摘要语料库中主要通过“过程-动作”“过程-结果”“用途-结构”实现概念结构-语义间的动、静态转换;(2)“Classifier+Thing”的形式表征过程为先确定“核心词(Thing)”,后在大脑词库中匹配“类别语(Classifier)”,遵循认知经济性原则;(3)该词组形式表征过程受学术语篇类型影响,遵循受限语言说。研究结果一定程度上深化了对学术语篇中名词词组的认识,提升学界对于船海学科学术话语的关注。 展开更多
关键词 classifier+Thing” 认知路径及理据 学术摘要 名词词组
在线阅读 下载PDF
Drone-Based Public Surveillance Using 3D Point Clouds and Neuro-Fuzzy Classifier
2
作者 Yawar Abbas Aisha Ahmed Alarfaj +3 位作者 Ebtisam Abdullah Alabdulqader Asaad Algarni Ahmad Jalal Hui Liu 《Computers, Materials & Continua》 2025年第3期4759-4776,共18页
Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions f... Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions from such videos poses the following challenges:variations of human motion,the complexity of backdrops,motion blurs,occlusions,and restricted camera angles.This research presents a human activity recognition system to address these challenges by working with drones’red-green-blue(RGB)videos.The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while reducing background interference before converting from RGB to grayscale images.The YOLO(You Only Look Once)algorithm detects and extracts humans from each frame,obtaining their skeletons for further processing.The joint angles,displacement and velocity,histogram of oriented gradients(HOG),3D points,and geodesic Distance are included.These features are optimized using Quadratic Discriminant Analysis(QDA)and utilized in a Neuro-Fuzzy Classifier(NFC)for activity classification.Real-world evaluations on the Drone-Action,Unmanned Aerial Vehicle(UAV)-Gesture,and Okutama-Action datasets substantiate the proposed system’s superiority in accuracy rates over existing methods.In particular,the system obtains recognition rates of 93%for drone action,97%for UAV gestures,and 81%for Okutama-action,demonstrating the system’s reliability and ability to learn human activity from drone videos. 展开更多
关键词 Activity recognition geodesic distance pattern recognition neuro fuzzy classifier
在线阅读 下载PDF
A dual-approach to genomic predictions:leveraging convolutional networks and voting classifiers
3
作者 Raghad K.Mohammed Azmi Tawfeq Hussein Alrawi Ali Jbaeer Dawood 《Biomedical Engineering Communications》 2025年第1期3-11,共9页
Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the ident... Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the identification of risk factors associated with genetic disorders.Methods:Our study introduces a novel two-tiered analytical framework to raise the precision and reliability of genetic data interpretation.It is initiated by extracting and analyzing salient features from DNA sequences through a CNN-based feature analysis,taking advantage of the power inherent in Convolutional neural networks(CNNs)to attain complex patterns and minute mutations in genetic data.This study embraces an elite collection of machine learning classifiers interweaved through a stern voting mechanism,which synergistically joins the predictions made from multiple classifiers to generate comprehensive and well-balanced interpretations of the genetic data.Results:This state-of-the-art method was further tested by carrying out an empirical analysis on a variants'dataset of DNA sequences taken from patients affected by breast cancer,juxtaposed with a control group composed of healthy people.Thus,the integration of CNNs with a voting-based ensemble of classifiers returned outstanding outcomes,with performance metrics accuracy,precision,recall,and F1-scorereaching the outstanding rate of 0.88,outperforming previous models.Conclusions:This dual accomplishment underlines the transformative potential that integrating deep learning techniques with ensemble machine learning might provide in real added value for further genetic diagnostics and prognostics.These results from this study set a new benchmark in the accuracy of disease diagnosis through DNA sequencing and promise future studies on improved personalized medicine and healthcare approaches with precise genetic information. 展开更多
关键词 CNN DNA sequencing ensemble machine learning genetic disease voting classifier
在线阅读 下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
4
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
在线阅读 下载PDF
RefluxClassifier分离细颗粒的技术发展与应用前景 被引量:1
5
作者 马梦绮 张志远 +2 位作者 荆隆隆 方佳豪 李延锋 《有色金属(选矿部分)》 CAS 2024年第1期106-115,共10页
矿石综采技术带来诸多便利的同时,也导致了矿石中细颗粒比例增多。细颗粒分离成为了国内外矿物加工领域面临的难题。由于细颗粒质量小、比表面积大、表面能高、容易团聚,进而难以有效分离。本世纪初,由澳大利亚学者Galvin所研制的Reflux... 矿石综采技术带来诸多便利的同时,也导致了矿石中细颗粒比例增多。细颗粒分离成为了国内外矿物加工领域面临的难题。由于细颗粒质量小、比表面积大、表面能高、容易团聚,进而难以有效分离。本世纪初,由澳大利亚学者Galvin所研制的RefluxClassifier(回流分级机,简称RC)作为一种新型重力分选设备进入到矿物加工设备行列。该设备由液固流化床与倾斜通道组成,分为垂直段与倾斜段,具有操作简单、成本低廉和高效节能等优点。据研究,RC因其特殊的结构与工作机理可以有效解决细颗粒分离问题。本文首先归纳了国内外有关RC的理论研究,详细描述了RC倾斜段中颗粒在流体中的运动状态,阐明了倾斜通道内颗粒运动与流体流动特性之间的关系,简要分析了颗粒性质与流体之间的力与速度关系。此外,本文对目前现有RC的水速预测模型(经典动力学模型、经验模型、弱化粒度模型、平衡模型)进行了总结,并综合分析了各模型的适用范围。结合试验案例,介绍了RC在煤炭、黑金属、砂石骨料等领域的应用现状,举例分析不同试验条件下RC对细颗粒回收的分离情况。最后结合我国资源现状与现代设备发展趋势,提出如何深入优化RC分选理论模型、拓展更广阔的应用领域是国内外学者的长期研究目标,并展望RC在工业范围内的全面推广。 展开更多
关键词 Refluxclassifier 细粒回收 重力分选 颗粒运动
在线阅读 下载PDF
生态系统理论视域下滇西北乡村小学生心理健康素养提升FSVC模型:论证与建构 被引量:1
6
作者 张翠微 奚向伟 《基础教育研究》 2024年第11期77-82,共6页
在健康中国行动背景下,滇西北乡村小学生心理健康素养提升迫在眉睫,亟须建构适配的心理健康素养提升模型。文章通过对滇西北乡村小学生心理健康素养、心理健康问题、教师心理健康状况的测量,以及对乡村学生家长、教师进行半结构访谈,运... 在健康中国行动背景下,滇西北乡村小学生心理健康素养提升迫在眉睫,亟须建构适配的心理健康素养提升模型。文章通过对滇西北乡村小学生心理健康素养、心理健康问题、教师心理健康状况的测量,以及对乡村学生家长、教师进行半结构访谈,运用混合研究方法,从微系统——家庭(Family)、中系统——学校(School)、外系统——村落(Village)、宏系统——文化(Culture)四层次建构滇西北乡村小学生心理健康素养提升模型。 展开更多
关键词 生态系统理论 心理健康素养 滇西北 乡村小学生 fsvc模型
在线阅读 下载PDF
基于Extra Tree Classifier的水质安全建模预测
7
作者 杨丽佳 陈新房 +1 位作者 赵晗清 汪世伟 《电脑与电信》 2024年第6期57-61,共5页
随着工业化和城市化的快速发展,水质安全问题日益受到关注。本研究利用一个包含7999条数据记录的水质分析数据集,涵盖多种化学物质浓度测量值与安全阈值,以及“是否安全”分类变量,运用Extr aTree Classifier模型进行水质安全建模预测... 随着工业化和城市化的快速发展,水质安全问题日益受到关注。本研究利用一个包含7999条数据记录的水质分析数据集,涵盖多种化学物质浓度测量值与安全阈值,以及“是否安全”分类变量,运用Extr aTree Classifier模型进行水质安全建模预测及数据分析。本研究目的在于提供一个可靠的模型,以帮助决策者和相关部门更好地监测和维护水质安全,从而保障公众健康和环境可持续发展。 展开更多
关键词 水质安全 Lazy Predict Extra Tree classifier k折交叉验证 机器学习
在线阅读 下载PDF
Using Cross Entropy as a Performance Metric for Quantifying Uncertainty in DNN Image Classifiers: An Application to Classification of Lung Cancer on CT Images
8
作者 Eri Matsuyama Masayuki Nishiki +1 位作者 Noriyuki Takahashi Haruyuki Watanabe 《Journal of Biomedical Science and Engineering》 2024年第1期1-12,共12页
Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation... Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. . 展开更多
关键词 Cross Entropy Performance Metrics DNN Image classifiers Lung Cancer Prediction Uncertainty
在线阅读 下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
9
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
在线阅读 下载PDF
An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features
10
作者 Saad M.Darwish Abdul Rahman M.Sabri +1 位作者 Dhafar Hamed Abd Adel A.Elzoghabi 《Computer Systems Science & Engineering》 2024年第6期1595-1624,共30页
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient... The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%. 展开更多
关键词 Political articles orientation detection CatBoost classifier multi-level features context-based classification social networks machine learning stylometric features
在线阅读 下载PDF
Mammogram Classification with HanmanNets Using Hanman Transform Classifier
11
作者 Jyoti Dabass Madasu Hanmandlu +1 位作者 Rekha Vig Shantaram Vasikarla 《Journal of Modern Physics》 2024年第7期1045-1067,共23页
Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep infor... Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep information set features from ResNet by modifying its kernel functions to yield Type-1 HanmanNets and then AlexNet, GoogLeNet and VGG-16 by changing their feature maps to yield Type-2 HanmanNets. The two types of HanmanNets exploit the final feature maps of these architectures in the generation of deep information set features from mammograms for their classification using the Hanman Transform Classifier. In this work, the characteristics of the abnormality present in the mammograms are captured using the above network architectures that help derive the features of HanmanNets based on information set concept and their performance is compared via the classification accuracies. The highest accuracy of 100% is achieved for the multi-class classifications on the mini-MIAS database thus surpassing the results in the literature. Validation of the results is done by the expert radiologists to show their clinical relevance. 展开更多
关键词 MAMMOGRAMS ResNet 18 Hanman Transform classifier ABNORMALITY DIAGNOSIS VGG-16 AlexNet GoogleNet HanmanNets
在线阅读 下载PDF
Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection
12
作者 Islam Zada Mohammed Naif Alatawi +4 位作者 Syed Muhammad Saqlain Abdullah Alshahrani Adel Alshamran Kanwal Imran Hessa Alfraihi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2917-2939,共23页
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malwar... Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats. 展开更多
关键词 Security and privacy challenges in the context of requirements engineering supervisedmachine learning malware detection windows systems comparative analysis Gaussian Naive Bayes K Nearest Neighbors Stochastic Gradient Descent classifier Decision Tree
在线阅读 下载PDF
基于卷积神经网络组合算法的卷烟牌号在线分类识别研究 被引量:1
13
作者 李石头 廖付 +8 位作者 吴继忠 张军 徐梦瑶 丁伟 李永生 李淑彪 何文苗 王辉 毕一鸣 《分析测试学报》 北大核心 2025年第3期514-520,共7页
为探究烟丝在线近红外光谱与卷烟牌号间的关系,提出了一种基于ResNeXt18-CNN-LightGBM混合模型的卷烟牌号分类识别方法。首先对采集的烟丝样本在线光谱数据进行预处理,并利用ResNeXt18网络模型对预处理后的光谱进行初次特征提取。然后... 为探究烟丝在线近红外光谱与卷烟牌号间的关系,提出了一种基于ResNeXt18-CNN-LightGBM混合模型的卷烟牌号分类识别方法。首先对采集的烟丝样本在线光谱数据进行预处理,并利用ResNeXt18网络模型对预处理后的光谱进行初次特征提取。然后将提取后的特征输入自定义的3层卷积神经(CNN)网络模型中,进行二次特征提取。最后将CNN提取的特征代入LightGBM分类器进行牌号分类训练。结果表明,ResNeXt18-CNN-LightGBM模型中烟丝牌号分类的准确率达97%。相较于传统的单个化学计量学算法,该文提出的基于卷积神经网络组合算法的卷烟牌号分类识别方法简单易行、准确性高、稳定性好,可应用于卷烟工业生产中卷烟牌号的在线识别,对卷烟品牌管理、生产质量评价及卷烟质量管控具有重要意义。 展开更多
关键词 在线近红外光谱 卷烟牌号 ResNeXt18 LightGBM 分类效果
在线阅读 下载PDF
基于条件高斯PAC-Bayes的机载CNN分类器安全性评估 被引量:1
14
作者 马赞 白杰 +2 位作者 陈勇 刘瑞华 张艳婷 《航空学报》 北大核心 2025年第4期217-230,共14页
针对机器学习技术的固有不确定输出特性给航空器适航安全性定量评估造成的挑战,在SAE ARP4761标准框架下,基于条件高斯PAC-Bayes泛化理论提出一种面向卷积神经网络(CNN)分类功能的系统安全性评估方法。首先,基于PAC-Bayes理论,通过条件... 针对机器学习技术的固有不确定输出特性给航空器适航安全性定量评估造成的挑战,在SAE ARP4761标准框架下,基于条件高斯PAC-Bayes泛化理论提出一种面向卷积神经网络(CNN)分类功能的系统安全性评估方法。首先,基于PAC-Bayes理论,通过条件高斯分布改进训练方法,优化泛化界,获取CNN模型不确定性量化表示。其次,提出一种基于泛化界置信度的软件不确定性与硬件可靠性融合方法,获取CNN部件的综合失效基础数据,支持整机/系统的定量安全性评估。最后,以基于CNN的全球导航卫星系统干扰信号识别模块装机为案例,表明该方法对适航安全性评估的有效支撑作用,为CNN技术的装机应用提供了必要的适航符合性保证。同时也实验验证基于条件高斯的方法比标准PAC-Bayes及Vapnik-Chervonenkis维都具有更紧的计算边界。 展开更多
关键词 机载CNN分类器 PAC-Bayes SAE ARP4761 条件高斯 适航安全性
原文传递
从仿真到现实的多层级虚实域适应的滚动轴承故障诊断方法 被引量:2
15
作者 刘小峰 金燕 柏林 《控制与决策》 北大核心 2025年第3期889-898,共10页
针对仿真数据驱动的迁移故障诊断方法中虚实数据域差异过大带来的负迁移问题,提出一种基于虚实域多层级联合适应网络(VDMJAN)的故障仿真到现实诊断方法.采用非规则损伤形态的轴承故障动力学仿真模型,生成测试实体轴承的故障虚拟信号;构... 针对仿真数据驱动的迁移故障诊断方法中虚实数据域差异过大带来的负迁移问题,提出一种基于虚实域多层级联合适应网络(VDMJAN)的故障仿真到现实诊断方法.采用非规则损伤形态的轴承故障动力学仿真模型,生成测试实体轴承的故障虚拟信号;构建不同尺寸卷积核的深度卷积神经网络,对虚实域信号进行粗细粒度特征提取;采用多分类器并行输出概率融合法对实测样本进行伪标签标注,对仿真与实测样本进行不同层级的领域特征精细对齐;引入VDMJAN训练的有效性损失,保证了多分类器对实测样本状态识别的一致性,并采用已对齐实测数据对分类器进行校正微调.两个实验分析结果表明,所提出的VDMJAN在实测故障样本标签信息完全缺失的情况下,能够有效实现从仿真到现实的故障诊断,在特殊环境下样本稀缺的设备故障诊断领域具有较好的应用前景. 展开更多
关键词 滚动轴承 故障仿真建模 领域自适应 迁移诊断 多尺度特征提取 多分类器
原文传递
责任政治:党建引领社区分类治理的行动逻辑 被引量:2
16
作者 郝亚光 关庆华 《河南师范大学学报(哲学社会科学版)》 北大核心 2025年第1期31-39,F0002,共10页
党建引领社区分类治理是基层政治改革的新趋向,蕴藏着合法性与有效性的责任政治。本文以责任政治的“观念—结构—行动”为分析框架,结合重庆市D社区“三事分流”的实践样本,有效回应了基层党组织引领社区分类治理的行动逻辑。具体而言... 党建引领社区分类治理是基层政治改革的新趋向,蕴藏着合法性与有效性的责任政治。本文以责任政治的“观念—结构—行动”为分析框架,结合重庆市D社区“三事分流”的实践样本,有效回应了基层党组织引领社区分类治理的行动逻辑。具体而言,社区分类治理的行为过程彰显了党组织的核心地位和价值引领。以党建引领为主要手段,重构了社区分类治理的责任观念,理顺了社区多元主体的权责结构,激活了社区多元主体的责任行动;党建引领构建了社区分类治理的责任共同体,有效彰显了共识机制、责任机制和激励机制的统合作用。因此,巩固党建引领社区分类治理的实践成效,要围绕分类治理的责任行动,加强社区党组织的引领能力,以构建责任共同体为指引,激活基层党组织的责任观念,不断调适责任结构的存在样态,在激励机制的基础上,落实党建引领社区分类治理的政治责任。 展开更多
关键词 党建引领 社区 分类治理 责任政治
在线阅读 下载PDF
文化遗产保护机构档案资源分类的问题解析与体系重构——以敦煌研究院为例 被引量:3
17
作者 孙胜利 祝洁 +1 位作者 刘越男 王雪莲 《北京档案》 北大核心 2025年第1期16-22,共7页
档案资源既是文化遗产保护机构的重要资产,也是文化遗产保护和利用的关键。现有研究对文化遗产保护机构档案资源分类原理及标准的探讨相对薄弱,实践中的类别划分更较为混乱,与文化遗产领域实践运用的现实需求之间的矛盾日益突显。论文... 档案资源既是文化遗产保护机构的重要资产,也是文化遗产保护和利用的关键。现有研究对文化遗产保护机构档案资源分类原理及标准的探讨相对薄弱,实践中的类别划分更较为混乱,与文化遗产领域实践运用的现实需求之间的矛盾日益突显。论文通过对文化遗产保护机构档案资源分类现存问题进行深入分析,秉持科学性、全面性、系统性、合规性四项构建原则,结合对象分类法和职能分类法,构建了档案资源分类体系的理论框架。以敦煌研究院档案资源分类体系为例,系统阐述了其架构过程,为文化遗产保护机构档案管理的理论发展和实践应用提供指导与参考。 展开更多
关键词 文化遗产 档案资源 文化遗产本体档案 职能分类法 对象分类法
在线阅读 下载PDF
基于类小波辅助分类生成对抗网络的轴承故障数据生成方法 被引量:2
18
作者 焦华超 孙文磊 王宏伟 《中国机械工程》 北大核心 2025年第3期546-557,共12页
利用数据生成方法生成时域特征和频域特征与轴承故障真实信号一致的高质量数据,构建平衡数据集,对数据不平衡情况下建立高效的轴承故障诊断模型具有重要意义。针对现有数据生成方法仅关注时域或频域单一特征的局限,提出了类小波辅助分... 利用数据生成方法生成时域特征和频域特征与轴承故障真实信号一致的高质量数据,构建平衡数据集,对数据不平衡情况下建立高效的轴承故障诊断模型具有重要意义。针对现有数据生成方法仅关注时域或频域单一特征的局限,提出了类小波辅助分类生成对抗网络。基于小波变换原理,使用多层神经网络构建类小波变换(WLT)网络,模拟小波变换及逆变换,建立时域与频域信号的映射关系;将WLT网络嵌入辅助分类生成对抗网络(ACGAN)模型中,作为模型生成器的主体;构建两个不同功能的判别器,使得改进的ACGAN在一次训练中能同时学到真实轴承振动信号的时域和频域特征信息。试验结果表明,WLT-ACGAN模型生成的轴承振动信号具有与真实轴承振动信号一致的时域特征和频域特征,数据不平衡时,利用生成信号扩增的平衡数据集构建的故障诊断模型具有较高的准确率。 展开更多
关键词 辅助分类生成对抗网络 类小波变换 轴承故障诊断 数据生成
在线阅读 下载PDF
分类管理背景下民办学校举办者的法律地位 被引量:2
19
作者 刘永林 《河北师范大学学报(教育科学版)》 北大核心 2025年第1期32-41,共10页
党的二十大报告明确指出,坚持以人民为中心发展教育,加快建设高质量教育体系,引导规范民办教育发展。以法治思维和法治方式推进民办教育领域改革和发展是新时代教育强国建设的重要组成部分。在民办教育法律法规的分类管理深入实施阶段,... 党的二十大报告明确指出,坚持以人民为中心发展教育,加快建设高质量教育体系,引导规范民办教育发展。以法治思维和法治方式推进民办教育领域改革和发展是新时代教育强国建设的重要组成部分。在民办教育法律法规的分类管理深入实施阶段,新《民促法》关于非营利性与营利性民办学校的基本分类为举办者法律地位的探讨奠定了重要基础,也为举办者法律地位的重构和分类提供了重要契机。新《民促法》及《民促法实施条例》并未直接明确民办学校举办者的法律地位及合法权益的主要外延。当前,立足于民办学校举办者法律地位的概念界定和文献回顾,从民办学校举办者法律地位的实践逻辑入手,对非营利性、营利性民办学校的主要权利与义务以及过渡阶段民办学校的比照原则进行梳理阐述,为民办学校举办者法律地位的规范再造奠定基础,助力推动民办教育高质量发展。 展开更多
关键词 民办教育促进法 分类管理 民办学校举办者 法律地位
在线阅读 下载PDF
知识生产模式转型背景下研究生分类培养的四重逻辑 被引量:1
20
作者 杨超 胡云龙 《黑龙江高教研究》 北大核心 2025年第7期103-109,共7页
研究生教育分类发展是研究生教育强国建设的内在要求。研究生教育本质是高深知识生产,知识生产模式转型过程中所体现的特点与研究生分类培养的目标、主体、内容、组织形式以及质量标准等具有相互契合性和内在耦合关系。在知识生产模式... 研究生教育分类发展是研究生教育强国建设的内在要求。研究生教育本质是高深知识生产,知识生产模式转型过程中所体现的特点与研究生分类培养的目标、主体、内容、组织形式以及质量标准等具有相互契合性和内在耦合关系。在知识生产模式转型背景下,研究生分类培养在健全中国特色研究生教育体系、提升研究生综合素养和职业发展能力、推动产业升级和技术创新、满足社会公众高层次多样化教育需求等方面具有多重价值。面对知识生产模式转型,研究生分类培养仍面临同质化培养现象仍存、社会公众认识存在偏差、产学研协同机制不畅、治理体系不够完善等现实挑战。为此,应构建“定位明晰-课程优化-评价多样”一体衔接的分类培养体系,创建“理念指引-机制健全-能力提升”一体统筹的导师队伍分类建设范式,打造“目标明确-机制灵活-反馈科学”一体协同的育人模式,营造“机制联动-决策科学-资源优化”一体联动的分类治理环境。 展开更多
关键词 知识生产模式转型 研究生分类培养 学术学位 专业学位
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部