A digital predistorted class-F power amplifier (PA) using Cree GaN HEMT CGH40010 operating at 2. 12 GHz is presented to obtain high efficiency and excellent linearity for wideband code-division multiple access ( WC...A digital predistorted class-F power amplifier (PA) using Cree GaN HEMT CGH40010 operating at 2. 12 GHz is presented to obtain high efficiency and excellent linearity for wideband code-division multiple access ( WCDMA ) applications. Measurement results with the continuous wave (CW) signals indicate that the designed class-F PA achieves a peak power-added efficiency (PAE) of 75. 2% with an output power of 39.4 dBm. The adjacent channel power ratio (ACPR) of the designed PA after digital predistortion (DPD) decreases from -28. 3 and -27. 5 dBc to -51.9 and -54. 0 dBc, respectively, for a 4-carrier 20 MHz WCDMA signal with 7. 1 dB peak to average power ratio (PAPR). The drain efficiency (DE) of the PA is 37. 8% at an average output power of 33. 3 dBm. The designed power amplifier can be aoolied in the WCDMA system.展开更多
The appearance of third-generation semiconductors represented by gallium nitride (GaN) material greatly improves the output power of a power amplifier (PA), but the efficiency of the PA needs to be further improve...The appearance of third-generation semiconductors represented by gallium nitride (GaN) material greatly improves the output power of a power amplifier (PA), but the efficiency of the PA needs to be further improved. The Class-F PA reduces the overlap of drain voltage and current by tuning harmonic impedance so that high efficiency is achieved. This paper begins with the principle of class-F PA, regards the third harmonic voltage as an independent variable, analyzes the influence of the third harmonic on fundamental, and points out how drain efficiency and output power vary with the third harmonic voltage with an I-V knee effect. Finally, the best third harmonic impedance is found mathematically. We compare our results with the Loadpull technique in advanced design system environment and conclude that an optimized third harmonic impedance is open in an ideal case, while it is not at an open point with the I-V knee effect, and the drain efficiency with optimized third harmonic impedance is 4% higher than that with the third harmonic open.展开更多
An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influ...An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influence the harmonic impedance heavily at the X-band,so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane.Experiment results show that,in the continuous-wave mode,the power amplifier achieves 61.7% power added efficiency(PAE),which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT.To the best of our knowledge,this is the first inverse class-F Ga N internally-matched power amplifier,and the PAE is quite high at the X-band.展开更多
This paper proposed the high-frequency, multi-harmonic-controlled, Class-F power amplifier (PA) implemented with 0.5 μm GaN Hetrojunction Electron Mobility Transistor (HEMT). For PA design at high frequencies, parasi...This paper proposed the high-frequency, multi-harmonic-controlled, Class-F power amplifier (PA) implemented with 0.5 μm GaN Hetrojunction Electron Mobility Transistor (HEMT). For PA design at high frequencies, parasitics of a transistor significantly increase the difficulty of harmonic manipulation, compared to low-frequency cases. To overcome this issue, we propose a novel design methodology based on a band-reject, low-pass, output matching network, which is realized with passive components. This network provides optimal fundamental impedance and allows harmonic control up to the third order to enable an efficient Class-F behavior. The implemented PA exhibits performance at 2.5 GHz with a 50% PAE, 14 dB gain, and 10 W output power.展开更多
The fundamental operating principle of a Class F power amplifier and the factors aiding or affecting Class F performance were explicated previously. A Class F power amplifier design which satisfies WCDMA specification...The fundamental operating principle of a Class F power amplifier and the factors aiding or affecting Class F performance were explicated previously. A Class F power amplifier design which satisfies WCDMA specifications is explained in this paper. The Class F amplifier was designed by employing Motorola’s LDMOS (Laterally Diffused Metal Oxide Semiconductor) transistor models and we simulated its performance by means of ADS. A variety of procedures were applied in the process of designing Class F amplifier, namely, DC simulation, bias point selection, source-pull and load-pull characterization, input and output matching circuit design and the design of suitable harmonic traps, which are explained here.展开更多
A broadband class-F power amplifier for an S-band handset device is integrated on a 330.82 mm^3 die using an In Ga /GaAs HBT process. With LC serial harmonic traps immersed into the broadband output matching circuit, ...A broadband class-F power amplifier for an S-band handset device is integrated on a 330.82 mm^3 die using an In Ga /GaAs HBT process. With LC serial harmonic traps immersed into the broadband output matching circuit, good harmonic suppression performance can be achieved. A pure resistive impedance of the matching circuit, but near zero at second and infinite at third harmonic frequency, which enhances the efficiency, is obtained across 1.8–2.5 GHz. Tested with a continuous wave(CW) signal, the PA delivers an output power of 34 dBm and achieves a PAE of 57% at 2 GHz. In addition, excellent harmonic suppression levels of less than –53 dBc across the second to fifth harmonic are obtained.展开更多
针对无线通信应用的射频功率放大器,提出了一种新颖的温度补偿电路。应用该温度补偿电路,设计了一款基于In Ga P/Ga As HBT工艺的两级F类功率放大器。该功率放大器采用了带温度补偿特性的有源偏置电路,能有效地提高线性度,补偿温度引起...针对无线通信应用的射频功率放大器,提出了一种新颖的温度补偿电路。应用该温度补偿电路,设计了一款基于In Ga P/Ga As HBT工艺的两级F类功率放大器。该功率放大器采用了带温度补偿特性的有源偏置电路,能有效地提高线性度,补偿温度引起的性能偏差;输出匹配网络采用F类功率放大器谐波理论而设计。在1 920~1 980 MHz频段和电源电压3.4 V条件下,测得常温状态该功率放大器增益为27 d B;输出功率在28 d Bm时功率附加效率达到42%,邻信道功率比为?36 d Bc;在?20℃~80℃之间功率附加效率和邻信道功率比基本不变。展开更多
基金The National Natural Science Foundation of China(No.60702163)the National Science and Technology Major Project(No.2010ZX03007-002-01,2011ZX03004-003)
文摘A digital predistorted class-F power amplifier (PA) using Cree GaN HEMT CGH40010 operating at 2. 12 GHz is presented to obtain high efficiency and excellent linearity for wideband code-division multiple access ( WCDMA ) applications. Measurement results with the continuous wave (CW) signals indicate that the designed class-F PA achieves a peak power-added efficiency (PAE) of 75. 2% with an output power of 39.4 dBm. The adjacent channel power ratio (ACPR) of the designed PA after digital predistortion (DPD) decreases from -28. 3 and -27. 5 dBc to -51.9 and -54. 0 dBc, respectively, for a 4-carrier 20 MHz WCDMA signal with 7. 1 dB peak to average power ratio (PAPR). The drain efficiency (DE) of the PA is 37. 8% at an average output power of 33. 3 dBm. The designed power amplifier can be aoolied in the WCDMA system.
文摘The appearance of third-generation semiconductors represented by gallium nitride (GaN) material greatly improves the output power of a power amplifier (PA), but the efficiency of the PA needs to be further improved. The Class-F PA reduces the overlap of drain voltage and current by tuning harmonic impedance so that high efficiency is achieved. This paper begins with the principle of class-F PA, regards the third harmonic voltage as an independent variable, analyzes the influence of the third harmonic on fundamental, and points out how drain efficiency and output power vary with the third harmonic voltage with an I-V knee effect. Finally, the best third harmonic impedance is found mathematically. We compare our results with the Loadpull technique in advanced design system environment and conclude that an optimized third harmonic impedance is open in an ideal case, while it is not at an open point with the I-V knee effect, and the drain efficiency with optimized third harmonic impedance is 4% higher than that with the third harmonic open.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016801)
文摘An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influence the harmonic impedance heavily at the X-band,so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane.Experiment results show that,in the continuous-wave mode,the power amplifier achieves 61.7% power added efficiency(PAE),which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT.To the best of our knowledge,this is the first inverse class-F Ga N internally-matched power amplifier,and the PAE is quite high at the X-band.
文摘This paper proposed the high-frequency, multi-harmonic-controlled, Class-F power amplifier (PA) implemented with 0.5 μm GaN Hetrojunction Electron Mobility Transistor (HEMT). For PA design at high frequencies, parasitics of a transistor significantly increase the difficulty of harmonic manipulation, compared to low-frequency cases. To overcome this issue, we propose a novel design methodology based on a band-reject, low-pass, output matching network, which is realized with passive components. This network provides optimal fundamental impedance and allows harmonic control up to the third order to enable an efficient Class-F behavior. The implemented PA exhibits performance at 2.5 GHz with a 50% PAE, 14 dB gain, and 10 W output power.
文摘The fundamental operating principle of a Class F power amplifier and the factors aiding or affecting Class F performance were explicated previously. A Class F power amplifier design which satisfies WCDMA specifications is explained in this paper. The Class F amplifier was designed by employing Motorola’s LDMOS (Laterally Diffused Metal Oxide Semiconductor) transistor models and we simulated its performance by means of ADS. A variety of procedures were applied in the process of designing Class F amplifier, namely, DC simulation, bias point selection, source-pull and load-pull characterization, input and output matching circuit design and the design of suitable harmonic traps, which are explained here.
文摘A broadband class-F power amplifier for an S-band handset device is integrated on a 330.82 mm^3 die using an In Ga /GaAs HBT process. With LC serial harmonic traps immersed into the broadband output matching circuit, good harmonic suppression performance can be achieved. A pure resistive impedance of the matching circuit, but near zero at second and infinite at third harmonic frequency, which enhances the efficiency, is obtained across 1.8–2.5 GHz. Tested with a continuous wave(CW) signal, the PA delivers an output power of 34 dBm and achieves a PAE of 57% at 2 GHz. In addition, excellent harmonic suppression levels of less than –53 dBc across the second to fifth harmonic are obtained.
文摘针对无线通信应用的射频功率放大器,提出了一种新颖的温度补偿电路。应用该温度补偿电路,设计了一款基于In Ga P/Ga As HBT工艺的两级F类功率放大器。该功率放大器采用了带温度补偿特性的有源偏置电路,能有效地提高线性度,补偿温度引起的性能偏差;输出匹配网络采用F类功率放大器谐波理论而设计。在1 920~1 980 MHz频段和电源电压3.4 V条件下,测得常温状态该功率放大器增益为27 d B;输出功率在28 d Bm时功率附加效率达到42%,邻信道功率比为?36 d Bc;在?20℃~80℃之间功率附加效率和邻信道功率比基本不变。