To satisfy the design requirements of analog-to-digital converter (ADC) of high speed sampling system in an infrared focal plane array tester with 1024 × 1024 pixels, a first inter-stage amplifier of 12-bit 40-...To satisfy the design requirements of analog-to-digital converter (ADC) of high speed sampling system in an infrared focal plane array tester with 1024 × 1024 pixels, a first inter-stage amplifier of 12-bit 40- Msample/s pipelined ADC was designed with 0. 35 μm CMOS technology. On the basis of traditional two-stage amplifier, the cross-coupled class AB output stage and cascode compensation were adopted to improve the output vohage swing and bandwidth. Power dissipation was optimized with math tools. Circuit and layout design were completed. Simulation results show that the designed amplifier has good performance of 95 dB dc gain, ±2 V output voltage swing, 190 MHz bandwidth and 63° phase margin with feedback factor 1/4, 33 mW power dissipation and so on, which can meet the system requirements.展开更多
A novel charge exchanging compensation (CEC) technique is proposed for a wideband sample-and-hold (S/H) circuit applied in an IF sampling ADC. The CEC technique compensates the sampling bandwidth by eliminating th...A novel charge exchanging compensation (CEC) technique is proposed for a wideband sample-and-hold (S/H) circuit applied in an IF sampling ADC. The CEC technique compensates the sampling bandwidth by eliminating the impact from finite on-resistance of the sampling switch, and avoids increasing clock feedthrough and charge injection. Meanwhile, a low power two stage OTA with a class AB output stage is designed to provide the S/H a 3Vp-p input range under 1.8V power. The S/H achieves a 94dB spurious-free dynamic range for a 200MHz input signal at a 100Ms/s sample rate and consumes only 26mW with a 5.5pF load.展开更多
文摘To satisfy the design requirements of analog-to-digital converter (ADC) of high speed sampling system in an infrared focal plane array tester with 1024 × 1024 pixels, a first inter-stage amplifier of 12-bit 40- Msample/s pipelined ADC was designed with 0. 35 μm CMOS technology. On the basis of traditional two-stage amplifier, the cross-coupled class AB output stage and cascode compensation were adopted to improve the output vohage swing and bandwidth. Power dissipation was optimized with math tools. Circuit and layout design were completed. Simulation results show that the designed amplifier has good performance of 95 dB dc gain, ±2 V output voltage swing, 190 MHz bandwidth and 63° phase margin with feedback factor 1/4, 33 mW power dissipation and so on, which can meet the system requirements.
文摘A novel charge exchanging compensation (CEC) technique is proposed for a wideband sample-and-hold (S/H) circuit applied in an IF sampling ADC. The CEC technique compensates the sampling bandwidth by eliminating the impact from finite on-resistance of the sampling switch, and avoids increasing clock feedthrough and charge injection. Meanwhile, a low power two stage OTA with a class AB output stage is designed to provide the S/H a 3Vp-p input range under 1.8V power. The S/H achieves a 94dB spurious-free dynamic range for a 200MHz input signal at a 100Ms/s sample rate and consumes only 26mW with a 5.5pF load.