As the geometric center of circular grating does not coincide with the rotation center,the angle measurement error of circular grating is analyzed. Based on the moire fringe equations in decentration condition,the mat...As the geometric center of circular grating does not coincide with the rotation center,the angle measurement error of circular grating is analyzed. Based on the moire fringe equations in decentration condition,the mathematical model of angle measurement error is derived. It is concluded that the decentration between the centre of circular grating and the center of revolving shaft leads to the first-harmonic error of angle measurement. The correctness of the result is proved by experimental data. The method of error compensation is presented,and the angle measurement accuracy of the circular grating is effectively improved by the error compensation.展开更多
As circular grating is not vertical to the shaft,the angle measurement error of the circular grating is analyzed.Based on the moire fringe equations in pitched condition,the mathematic model of the angle measurement e...As circular grating is not vertical to the shaft,the angle measurement error of the circular grating is analyzed.Based on the moire fringe equations in pitched condition,the mathematic model of the angle measurement error is derived.The paper comes to the conclusion that the nonorthogonal angle between the circular grating and the shaft leads to the second harmonic error of the angle measurement,and the correctness of the result is proved by the experimental data.The method of the error compensation is presented,and the angle measurement accuracy of the circular grating is improved by the error compensation.展开更多
A genetic algorithm(GA)-based new method is designed to evaluate thecircularity error of mechanical parts. The method uses the capability of nonlinear optimization ofGA to search for the optimal solution of circularit...A genetic algorithm(GA)-based new method is designed to evaluate thecircularity error of mechanical parts. The method uses the capability of nonlinear optimization ofGA to search for the optimal solution of circularity error. The finely-designed GA (FDGA)characterized dynamical bisexual recombination and Gaussian mutation. The mathematical model of thenonlinear problem is given. The implementation details in FDGA are described such as the crossoveror recombination mechanism which utilized a bisexual reproduction scheme and the elitist reservationmethod; and the adaptive mutation which used the Gaussian probability distribution to determine thevalues of the offspring produced by mutation mechanism. The examples are provided to verify thedesigned FDGA. The computation results indicate that the FDGA works very well in the field of formerror evaluation such as circularity evaluation.展开更多
We focused on the mathematical modeling and characteristics analysis for the nutation drive based on error parameters. The crown gear tooth profile equation was introduced according to the national standard double cir...We focused on the mathematical modeling and characteristics analysis for the nutation drive based on error parameters. The crown gear tooth profile equation was introduced according to the national standard double circular arc tooth profile and based on the equal tooth strength principle. The nutation drive meshing coordinate system was set up by introducing the cone vertex error, tilt error, nutation angle error and spiral angle error. The tooth profile equations of the double circular arc external and internal spiral bevel gears were further obtained based on the crown gear tooth profile equation concerning above mentioned error parameters. The influences of the nutation gear reducer tooth contact conditions were analyzed with the gear tilt error and axial misalignment error. Finally, the correctness of the theoretical analysis was verified by the contact spot test.展开更多
基金Sponsored by the Eleventh Five-year Plan Defense Pre-research Fund ( Grant No 51309040201)
文摘As the geometric center of circular grating does not coincide with the rotation center,the angle measurement error of circular grating is analyzed. Based on the moire fringe equations in decentration condition,the mathematical model of angle measurement error is derived. It is concluded that the decentration between the centre of circular grating and the center of revolving shaft leads to the first-harmonic error of angle measurement. The correctness of the result is proved by experimental data. The method of error compensation is presented,and the angle measurement accuracy of the circular grating is effectively improved by the error compensation.
文摘As circular grating is not vertical to the shaft,the angle measurement error of the circular grating is analyzed.Based on the moire fringe equations in pitched condition,the mathematic model of the angle measurement error is derived.The paper comes to the conclusion that the nonorthogonal angle between the circular grating and the shaft leads to the second harmonic error of the angle measurement,and the correctness of the result is proved by the experimental data.The method of the error compensation is presented,and the angle measurement accuracy of the circular grating is improved by the error compensation.
基金The project is supported by National Natural Science Foundation of China(No.59975025).
文摘A genetic algorithm(GA)-based new method is designed to evaluate thecircularity error of mechanical parts. The method uses the capability of nonlinear optimization ofGA to search for the optimal solution of circularity error. The finely-designed GA (FDGA)characterized dynamical bisexual recombination and Gaussian mutation. The mathematical model of thenonlinear problem is given. The implementation details in FDGA are described such as the crossoveror recombination mechanism which utilized a bisexual reproduction scheme and the elitist reservationmethod; and the adaptive mutation which used the Gaussian probability distribution to determine thevalues of the offspring produced by mutation mechanism. The examples are provided to verify thedesigned FDGA. The computation results indicate that the FDGA works very well in the field of formerror evaluation such as circularity evaluation.
基金Funded by the National Natural Science Foundation of China(Grant No.51275092)the Program of Fujian Provincial Industrial Robot Basic Components Technology Research and Development Center(Grant No.2014H21010011)the Program of Fujian Provincial Collaborative Innovation Center for High-end Equipment Manufacturing
文摘We focused on the mathematical modeling and characteristics analysis for the nutation drive based on error parameters. The crown gear tooth profile equation was introduced according to the national standard double circular arc tooth profile and based on the equal tooth strength principle. The nutation drive meshing coordinate system was set up by introducing the cone vertex error, tilt error, nutation angle error and spiral angle error. The tooth profile equations of the double circular arc external and internal spiral bevel gears were further obtained based on the crown gear tooth profile equation concerning above mentioned error parameters. The influences of the nutation gear reducer tooth contact conditions were analyzed with the gear tilt error and axial misalignment error. Finally, the correctness of the theoretical analysis was verified by the contact spot test.