期刊文献+
共找到3,798篇文章
< 1 2 190 >
每页显示 20 50 100
Additive Biderivations and Centralizing Maps on Nest Algebras
1
作者 Xiaofei QI 《Journal of Mathematical Research with Applications》 CSCD 2013年第2期246-252,共7页
Let N be a nest on a Banach space X, and AlgN be the associated nest algebra. It is shown that, if there exists a non-trivial element N in N which is complemented in X and dim N ≠ 1, then every additive biderivation ... Let N be a nest on a Banach space X, and AlgN be the associated nest algebra. It is shown that, if there exists a non-trivial element N in N which is complemented in X and dim N ≠ 1, then every additive biderivation from AlgN into itself is an inner biderivation. Based on this result, we give characterizations of centralizing (commuting) maps, cocentraliz-ing derivations, and cocommuting generalized derivations on nest algebras. 展开更多
关键词 biderivations commuting maps centralizing maps nest algebra.
原文传递
Microglial polarization pathways and therapeutic drugs targeting activated microglia in traumatic brain injury 被引量:2
2
作者 Liping Shi Shuyi Liu +2 位作者 Jialing Chen Hong Wang Zhengbo Wang 《Neural Regeneration Research》 2026年第1期39-56,共18页
Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microgl... Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice. 展开更多
关键词 animal model anti-inflammatory drug cell replacement strategy central nervous system mesenchymal stem cell MICROGLIA NEUROINFLAMMATION non-human primate signaling pathway traumatic brain injury
暂未订购
Short-chain fatty acids mediate enteric and central nervous system homeostasis in Parkinson’s disease:Innovative therapies and their translation 被引量:1
3
作者 Shimin Pang Zhili Ren +1 位作者 Hui Ding Piu Chan 《Neural Regeneration Research》 2026年第3期938-956,共19页
Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’... Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’s disease.In this review,we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson’s disease,highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease.Focusing on the nervous system,we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system.We identify key processes,including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids.Importantly,structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormalα-synuclein expression and gastrointestinal dysmotility,which could serve as an initiating event in Parkinson’s disease.Furthermore,we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve,immune circulation,and endocrine signaling.This communication may shed light on their potential role in the transmission ofα-synuclein from the gut to the brain.Finally,we elucidate novel treatment strategies for Parkinson’s disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice.In conclusion,this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson’s disease from the perspective of the nervous system.Moreover,it highlights the potential value of short-chain fatty acids in early intervention for Parkinson’s disease.Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson’s disease. 展开更多
关键词 ALPHA-SYNUCLEIN blood-brain barrier blood circulation central nervous system ENDOCRINE enteric nervous system glial cell gut-brain axis gut microbiota intestinal barrier neuron Parkinson’s disease short chain fatty acids vagus nerve
暂未订购
Plasticity meets regeneration during innate spinal cord repair
4
作者 Amruta Tendolkar Mayssa H.Mokalled 《Neural Regeneration Research》 2026年第3期1136-1137,共2页
Regenerative capacity of the central nervous system(CNS)is unevenly distributed among vertebrates.While most mammalian species including humans elicit limited repair following CNS injury or disease,highly regenerative... Regenerative capacity of the central nervous system(CNS)is unevenly distributed among vertebrates.While most mammalian species including humans elicit limited repair following CNS injury or disease,highly regenerative vertebrates including urodele amphibians and teleost fish spontaneously reverse CNS damage.Teletost zebrafish(danio rerio)are tropical freshwater fish that proved to be an excellent vertebrate model of successful CNS regeneration.Differential neuronal,glial,and immune injury responses underlie disparate injury outcomes between highly regenerative zebrafish and poorly regenerative mammals.This article describes complications associated with neuronal repair following spinal cord injury(SCI)in poorly regenerative mammals and highlights intersecting modes of plasticity and regeneration in highly regenerative zebrafish(Figures 1 and 2).Comparative approaches evaluating immunoglial SCI responses were recently reviewed elsewhere(Reyes and Mokalled,2024). 展开更多
关键词 urodele amphibians central nervous system central nervous system cns REGENERATION vertebrate model PLASTICITY vertebrates teleost fish
暂未订购
Functional central nervous system regeneration:Challenges from axons to circuits
5
作者 Apolline Delaunay Mickael Le Boulc’h +1 位作者 Stephane Belin Homaira Nawabi 《Neural Regeneration Research》 2026年第5期1983-1984,共2页
The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzh... The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzheimer's or Parkinson's disease)or traumatic injuries(such as spinal cord lesions).In the last 20 years,the field has made significant progress in unlocking axon regrowth. 展开更多
关键词 parkinsons disease unlocking axon regrowth neurodegenerative diseases central nervous system cnscomposed functional regeneration axon regrowth spinal cord lesions central nervous system
暂未订购
Chromatin accessibility regulates axon regeneration
6
作者 Isa Samad Brett J.Hilton 《Neural Regeneration Research》 2026年第4期1548-1549,共2页
Central nervous system(CNS) axons fail to regenerate following brain or spinal cord injury(SCI),which typically leads to permanent neurological deficits.Peripheral nervous system axons,howeve r,can regenerate followin... Central nervous system(CNS) axons fail to regenerate following brain or spinal cord injury(SCI),which typically leads to permanent neurological deficits.Peripheral nervous system axons,howeve r,can regenerate following injury.Understanding the mechanisms that underlie this difference is key to developing treatments for CNS neurological diseases and injuries characterized by axonal damage.To initiate repair after peripheral nerve injury,dorsal root ganglion(DRG) neurons mobilize a pro-regenerative gene expression program,which facilitates axon outgrowth. 展开更多
关键词 peripheral nerve injurydorsal root ganglion drg central nervous system nervous system developing treatments spinal cord injury chromatin accessibility central nervous system cns spinal cord
暂未订购
Regulation of synaptic function and lipid metabolism
7
作者 Tongtong Zhang Yunsi Yin +8 位作者 Xinyi Xia Xinwei Que Xueyu Liu Guodong Zhao Jiahao Chen Qiuyue Chen Zhiqing Xu Yi Tang Qi Qin 《Neural Regeneration Research》 2026年第3期1037-1057,共21页
Synapses are key structures involved in transmitting information in the nervous system,and their functions rely on the regulation of various lipids.Lipids play important roles in synapse formation,neurotransmitter rel... Synapses are key structures involved in transmitting information in the nervous system,and their functions rely on the regulation of various lipids.Lipids play important roles in synapse formation,neurotransmitter release,and signal transmission,and dysregulation of lipid metabolism is closely associated with various neurodegenerative diseases.The complex roles of lipids in synaptic function and neurological diseases have recently garnered increasing attention,but their specific mechanisms remain to be fully understood.This review aims to explore how lipids regulate synaptic activity in the central nervous system,focusing on their roles in synapse formation,neurotransmitter release,and signal transmission.Additionally,it discusses the mechanisms by which glial cells modulate synaptic function through lipid regulation.This review shows that within the central nervous system,lipids are essential components of the cell membrane bilayer,playing critical roles in synaptic structure and function.They regulate presynaptic vesicular trafficking,postsynaptic signaling pathways,and glial-neuronal interactions.Cholesterol maintains membrane fluidity and promotes the formation of lipid rafts.Glycerophospholipids contribute to the structural integrity of synaptic membranes and are involved in the release of synaptic vesicles.Sphingolipids interact with synaptic receptors through various mechanisms to regulate their activity and are also involved in cellular processes such as inflammation and apoptosis.Fatty acids are vital for energy metabolism and the synthesis of signaling molecules.Abnormalities in lipid metabolism may lead to impairments in synaptic function,affecting information transmission between neurons and the overall health of the nervous system.Therapeutic strategies targeting lipid metabolism,particularly through cholesterol modulation,show promise for treating these conditions.In neurodegenerative diseases such as Alzheimer’s disease,Parkinson disease,and amyotrophic lateral sclerosis,dysregulation of lipid metabolism is closely linked to synaptic dysfunction.Therefore,lipids are not only key molecules in neural regeneration and synaptic repair but may also contribute to neurodegenerative pathology when metabolic dysregulation occurs.Further research is needed to elucidate the specific mechanisms linking lipid metabolism to synaptic dysfunction and to develop targeted lipid therapies for neurological diseases. 展开更多
关键词 ASTROCYTE central nervous system cholesterol GLYCEROPHOSPHOLIPIDS lipid MICROGLIA neurodegenerative diseases SPHINGOLIPIDS SYNAPSE therapy
暂未订购
A GALLERY OF PEOPLE AND PLACES
8
《ChinAfrica》 2026年第1期12-13,共2页
RUSSIA.A 2026-themed light installation illuminates the ice rink in Gorky Central Park of Culture and Leisure in Moscow on 1 December 2025.
关键词 MOSCOW ILLUMINATION gorky central park culture leisure THEME light installation ice rink
原文传递
mTORC1 and mTORC2 synergy in human neural development, disease, and regeneration
9
作者 Navroop K.Dhaliwal Julien Muffat Yun Li 《Neural Regeneration Research》 2026年第4期1552-1553,共2页
The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regul... The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regulates diverse aspects of neural development and function. Genetic mutations within the m TOR pathway lead to severe neurodevelopmental disorders, collectively known as “mTORopathies”(Crino, 2020). Dysfunctions of m TOR, including both its hyperactivation and hypoactivation, have also been implicated in a wide spectrum of other neurodevelopmental and neurodegenerative conditions, highlighting its importance in CNS health. 展开更多
关键词 m tor neural development mtorc central nervous system cns mtor neurodevelopmental disorders neurodegenerative conditions
暂未订购
FIREproof:Intricacies of microglial biology
10
作者 Wei Cao 《Neural Regeneration Research》 2026年第2期663-664,共2页
Microglia are the macrophages that populate the brain parenchyma.Research in the past decades has identified them as both essential guardians of the brain and significant contributors to various neurological diseases.... Microglia are the macrophages that populate the brain parenchyma.Research in the past decades has identified them as both essential guardians of the brain and significant contributors to various neurological diseases.A highly versatile cell type,microglia have been shown to fulfill a multitude of critical roles in the central nervous system,including facilitating neurogenesis and myelination,pruning synapses,removing debris and waste,modulating neuronal activity,supporting the blood-brain barrier,repairing tissue damage,and surveilling against microbial invasions under physiological conditions(Prinz et al.,2021;Paolicelli et al.,2022). 展开更多
关键词 neurological diseases facilitating neurogenesis debris removal central nervous systemincluding NEUROGENESIS MYELINATION synapse pruning brain
暂未订购
Polysialic acid-Siglec immune checkpoints of microglia and macrophages:Perspectives for therapeutic intervention
11
作者 Hauke Thiesler Herbert Hildebrandt 《Neural Regeneration Research》 2026年第2期661-662,共2页
Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neu... Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neurodegenerative and demyelinating diseases(Borst et al.,2021).Together with infiltrating monocyte-derived macrophages,microglia also play a critical role for brain tumor development,since immunosuppressive interactions between tumor cells and tumor-associated microglia and macrophages(TAM)are linked to malignant progression.This mechanism is of particular relevance in glioblastoma(GB),the deadliest form of brain cancer with a median overall survival of less than 15 months(Khan et al.,2023).Therefore,targeting microglia and macrophage activation is a promising strategy for therapeutic interference in brain disease. 展开更多
关键词 therapeutic intervention central nervous system immune checkpoints neurodegenerative demyelinating diseases borst MACROPHAGES polysialic acid SIGLEC MICROGLIA
暂未订购
Ranibizumab on optic disc perfusion in central retinal vein occlusion
12
作者 Xuan Li Xiao-Feng Hao +2 位作者 Li-Ke Xie Jin-Hua Luo Meng-Jiao Zhang 《International Journal of Ophthalmology(English edition)》 2026年第1期77-82,共6页
AIM:To evaluate the therapeutic effects of ranibizumab on optic disc and macular microvascular perfusion in central retinal vein occlusion(CRVO)with macular edema(ME).METHODS:Optical coherence tomography angiology(OCT... AIM:To evaluate the therapeutic effects of ranibizumab on optic disc and macular microvascular perfusion in central retinal vein occlusion(CRVO)with macular edema(ME).METHODS:Optical coherence tomography angiology(OCTA)parameters,including optic disc vessel density(VD;including whole-disc VD,intra-disc VD,and peripapillary VD),superficial/deep capillary plexus(SCP/DCP)VD,and central macular thickness(CMT)were analyzed.Additional assessments included best-corrected visual acuity(BCVA)via Early Treatment Diabetic Retinopathy Study(ETDRS)chart and hemorheological profiling.CRVO patients received monthly intravitreal ranibizumab injections for three consecutive months.Pre-and post-treatment parameters were statistically compared.RESULTS:The study comprised 60 CRVO-ME patients(28 males;32 females),aged 50-78y(mean 63.3±7.6y)and 60 age-/sex-matched healthy controls.As compared with participants exhibiting normal funduscopic findings,CRVO patients demonstrated significantly elevated levels of low-shear-rate whole blood viscosity(LSR-WBV),high-shearrate whole blood viscosity(HSR-WBV),and aggregation index(AI,all P<0.05).In CRVO-affected eyes,vertical cupto-disc(C/D)ratio and optic cup volume were significantly smaller,whereas retinal nerve fiber layer(RNFL)thickness was significantly greater,compared to both unaffected contralateral eyes and normal control eyes(all P<0.05).Following treatment,VD of the entire optic disc(P<0.05),intra-disc VD(P<0.05),and peripapillary VD(P<0.05)all increased significantly relative to baseline.CMT decreased significantly(P<0.05),whereas macular SCP-VD and macular DCP-VD showed non-significant slight reductions(P>0.05).At baseline,BCVA of CRVO eyes correlated with whole-disc VD(r=-0.276,P=0.033),intra-disc VD(r=-0.342,P=0.009),and peripapillary VD(r=-0.335,P=0.007),with intra-disc VD demonstrating the strongest association.Besides,BCVA improvement,after the treatment,correlated positively with whole-disc VD(r=0.342,P=0.008)and intradisc VD(r=0.396,P=0.002).CONCLUSION:Optic disc blood perfusion is more closely associated with visual acuity than macular perfusion,suggesting intra-disc VD may serve as a potential biomarker for monitoring visual acuity changes in CRVO.Multiple ranibizumab injections significantly improve optic disc perfusion but may have exerted detrimental effects on the macula.CRVO patients shows higher hemorheological parameters than those with normal fundi.Reduced vertical C/D ratio and optic cup volume may be linked to CRVO incidence,potentially acting as susceptibility factors. 展开更多
关键词 central retinal vein occlusion macular edema optic disc RANIBIZUMAB optical coherence tomography angiology
原文传递
Centralized Circumcentered-Reection Method for Solving the Convex Feasibility Problem in Sparse Signal Recovery
13
作者 Chunmei LI Bangjun CHEN Xuefeng DUAN 《Journal of Mathematical Research with Applications》 2026年第1期119-133,共15页
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery... Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods. 展开更多
关键词 convex feasibility problem centralized circumcentered-re ection method sparse signal recovery compressed sensing
原文传递
All-Around Rural Revitalization Underway
14
《China Today》 2026年第1期24-25,共2页
The CPC Central Committee’s Recommendations for Formulating the 15th Five-Year Plan for National Economic and Social Development place rural revitalization as a priority within the overall framework of modernization,... The CPC Central Committee’s Recommendations for Formulating the 15th Five-Year Plan for National Economic and Social Development place rural revitalization as a priority within the overall framework of modernization,clearly stating that agricultural and rural modernization has a major bearing on Chinese modernization as a whole and the outcomes it delivers. 展开更多
关键词 agricultural modernization rural modernization national economic development social development CPC Central Committee five year plan rural revitalization
在线阅读 下载PDF
Dual effects of GABA_(A)R agonist anesthetics in neurodevelopmentnd vulnerable brains:From neurotoxic to therapeutic effects
15
作者 Dihan Lu Wen Zhang +1 位作者 Keyu Chen Xia Feng 《Neural Regeneration Research》 2026年第1期81-95,共15页
Debates regarding the specific effects of general anesthesia on developing brains have persisted for over 30 years.A consensus has been reached that prolonged,repeated,high-dose exposure to anesthetics is associated w... Debates regarding the specific effects of general anesthesia on developing brains have persisted for over 30 years.A consensus has been reached that prolonged,repeated,high-dose exposure to anesthetics is associated with a higher incidence of deficits in behavior and executive function,while single exposure has a relatively minor effect on long-term neurological function.In this review,we summarize the dose-dependent neuroprotective or neurotoxic effects of gamma-aminobutyric acid type A receptor agonists,a representative group of sedatives,on developing brains or central nervous system diseases.Most preclinical research indicates that anesthetics have neurotoxic effects on the developing brain through various signal pathways.However,recent studies on low-dose anesthetics suggest that they may promote neurodevelopment during this critical period.These findings are incomprehensible for the general“dose-effect”principles of pharmacological research,which has attracted researchers'interest and led to the following questions:What is the threshold for the dual effects exerted by anesthetics such as propofol and sevoflurane on the developing brain?To what extent can their protective effects be maximized?What are the underlying mechanisms involved in these effects?Consequently,this issue has essentially become a“mathematical problem.”After summarizing the dose-dependent effects of gamma-aminobutyric acid type A receptor agonist sedatives in both the developing brain and the brains of patients with central nervous system diseases,we believe that all such anesthetics exhibit specific threshold effects unique to each drug.These effects range from neuroprotection to neurotoxicity,depending on different brain functional states.However,the exact values of the specific thresholds for different drugs in various brain states,as well as the underlying mechanisms explaining why these thresholds exist,remain unclear.Further in-depth exploration of these issues could significantly enhance the therapeutic translational value of these anesthetics. 展开更多
关键词 brain central nervous system cognition gamma-aminobutyric acid type A receptor agonist general anesthetics neurogenesis neurological disorders neuroprotection NEUROTOXICITY signal pathways
暂未订购
Instructions for Authors
16
《International Journal of Ophthalmology(English edition)》 2026年第1期202-204,共3页
GENERAL INFORMATION International Journal of Ophthalmology—IJO,published continuously since 2008,a global ophthalmological scientific publication and a peer-reviewed,open access periodical published in print and onli... GENERAL INFORMATION International Journal of Ophthalmology—IJO,published continuously since 2008,a global ophthalmological scientific publication and a peer-reviewed,open access periodical published in print and online monthly(ISSN:2222-3959 print,ISSN:2227-4898 online).IJO is sponsored by the Chinese Medical Association Xi’an Branch,China and obtains guidance.It is indexed in SCI,PubMed,PubMed Central,Chemical Abstract,Scopus,EMBASE etc.The latest JCR IF is 1.8,Five-year Impact Factor is 1.8,CiteScore in 2024 is 2.8. 展开更多
关键词 Peer Reviewed Open Access SCI PUBMED Print Online Chinese Medical Association Xian Branch PubMed Central Global Ophthalmological Publication
原文传递
Adenosine:A key player in neuroinflammation
17
作者 Qilin Guo Rhea Seth Wenhui Huang 《Neural Regeneration Research》 2026年第4期1556-1557,共2页
Neuroinflammation,the inflammatory response of the central nervous system(CNS),is a common feature of many neurological disorders such as sepsis-associated encephalopathy(SAE),multiple sclerosis(MS),and Parkinson'... Neuroinflammation,the inflammatory response of the central nervous system(CNS),is a common feature of many neurological disorders such as sepsis-associated encephalopathy(SAE),multiple sclerosis(MS),and Parkinson's disease(PD).Prior studies identified cytokines(e.g.,tumor necrosis factor[TNF],interleukin[IL]-1,and IL-6)delivered by resident glial cells and brain-invading peripheral immune cells as the major contributor to neuroinflammation(Becher et al.,2017).In addition to pro-inflammatory cytokines,elevated levels of extracellular purine molecules such as adenosine triphosphate(ATP)and adenosine can be detected upon any pathological insults(e.g.,injury,ischemia,and hypoxia),contributing to the progression of neurological disorders(Borea et al.,2017). 展开更多
关键词 ADENOSINE sepsis associated encephalopathy central nervous system cns NEUROINFLAMMATION cerebral inflammation neurological disorders inflammatory response parkinsons disease pd prior
暂未订购
Brain-computer interfaces re-shape functional neurosurgery
18
作者 Thomas Kinfe Steffen Brenner Nima Etminan 《Neural Regeneration Research》 2026年第3期1122-1123,共2页
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography... Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019). 展开更多
关键词 microelectrode arraysthe brain computer interfaces ELECTROENCEPHALOGRAPHY ELECTROCORTICOGRAPHY interface central peripheral nervous system non invasive neurotechnologies functional neurosurgery microelectrode arrays
暂未订购
Spinal cord injury and inflammatory mediators:Role in“fire barrier”formation and potential for neural regeneration
19
作者 Mi Zhou Zhengyu Xu +2 位作者 Hao Zhong Guangzhi Ning Shiqing Feng 《Neural Regeneration Research》 2026年第3期923-937,共15页
Traumatic spinal cord injury result in considerable and lasting functional impairments,triggering complex inflammatory and pathological events.Spinal cord scars,often metaphorically referred to as“fire barriers,”aim... Traumatic spinal cord injury result in considerable and lasting functional impairments,triggering complex inflammatory and pathological events.Spinal cord scars,often metaphorically referred to as“fire barriers,”aim to control the spread of neuroinflammation during the acute phase but later hinder axon regeneration in later stages.Recent studies have enhanced our understanding of immunomodulation,revealing that injury-associated inflammation involves various cell types and molecules with positive and negative effects.This review employs bibliometric analysis to examine the literature on inflammatory mediators in spinal cord injury,highlighting recent research and providing a comprehensive overview of the current state of research and the latest advances in studies on neuroinflammation related to spinal cord injury.We summarize the immune and inflammatory responses at different stages of spinal cord injury,offering crucial insights for future research.Additionally,we review repair strategies based on inflammatory mediators for the injured spinal cord.Finally,this review discusses the current status and future directions of translational research focused on immune-targeting strategies,including pharmaceuticals,biomedical engineering,and gene therapy.The development of a combined,precise,and multitemporal strategy for the repair of injured spinal cords represents a promising direction for future research. 展开更多
关键词 axon regeneration bibliometric analysis central nervous system chronic phase conditioning lesion paradigm glia scar immunomodulatory pharmaceutics inflammatory mediator NEUROINFLAMMATION spinal cord injury zebrafish
暂未订购
Fibrotic scar formation after cerebral ischemic stroke:Targeting the Sonic hedgehog signaling pathway for scar reduction
20
作者 Jun Wen Hao Tang +14 位作者 Mingfen Tian Ling Wang Qinghuan Yang Yong Zhao Xuemei Li Yu Ren Jiani Wang Li Zhou Yongjun Tan Haiyun Wu Xinrui Cai Yilin Wang Hui Cao Jianfeng Xu Qin Yang 《Neural Regeneration Research》 2026年第2期756-768,共13页
Recent studies have shown that fibrotic scar formation following cerebral ischemic injury has varying effects depending on the microenvironment.However,little is known about how fibrosis is induced and regulated after... Recent studies have shown that fibrotic scar formation following cerebral ischemic injury has varying effects depending on the microenvironment.However,little is known about how fibrosis is induced and regulated after cerebral ischemic injury.Sonic hedgehog signaling participates in fibrosis in the heart,liver,lung,and kidney.Whether Shh signaling modulates fibrotic scar formation after cerebral ischemic stroke and the underlying mechanisms are unclear.In this study,we found that Sonic Hedgehog expression was upregulated in patients with acute ischemic stroke and in a middle cerebral artery occlusion/reperfusion injury rat model.Both Sonic hedgehog and Mitofusin 2 showed increased expression in the middle cerebral artery occlusion rat model and in vitro fibrosis cell model induced by transforming growth factor-beta 1.Activation of the Sonic hedgehog signaling pathway enhanced the expression of phosphorylated Smad 3 and Mitofusin 2 proteins,promoted the formation of fibrotic scars,protected synapses or promoted synaptogenesis,alleviated neurological deficits following middle cerebral artery occlusion/reperfusion injury,reduced cell apoptosis,facilitated the transformation of meninges fibroblasts into myofibroblasts,and enhanced the proliferation and migration of meninges fibroblasts.The Smad3 phosphorylation inhibitor SIS3 reversed the effects induced by Sonic hedgehog signaling pathway activation.Bioinformatics analysis revealed significant correlations between Sonic hedgehog and Smad3,between Sonic hedgehog and Mitofusin 2,and between Smad3 and Mitofusin 2.These findings suggest that Sonic hedgehog signaling may influence Mitofusin 2 expression by regulating Smad3 phosphorylation,thereby modulating the formation of early fibrotic scars following cerebral ischemic stroke and affecting prognosis.The Sonic Hedgehog signaling pathway may serve as a new therapeutic target for stroke treatment. 展开更多
关键词 central nervous system FIBROBLASTS fibrosis ischemic stroke Mitofusin 2 middle cerebral artery occlusion/reperfusion P-Smad3 Sonic Hedgehog SMAD3 TOM20
暂未订购
上一页 1 2 190 下一页 到第
使用帮助 返回顶部