The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively ...The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively applying mono-capacitor positioning, multiple positioning and reconfiguration processes using GA-based algorithms implemented in a Matlab environment. From the diagnostic study of this network, it was observed that a minimum voltage of 0.90 pu induces a voltage deviation of 5.26%, followed by active and reactive losses of 425.08 kW and 435.09 kVAR, respectively. Single placement with the NSGAII resulted in the placement of a 3000 kVAR capacitor at node 128, which proved to be the invariably neuralgic point. Multiple placements resulted in a 21.55% reduction in losses and a 0.74% regression in voltage profile performance. After topology optimization, the loss profile improved by 65.08% and the voltage profile improved by 1.05%. Genetic algorithms are efficient and effective tools for improving the performance of distribution networks, whose degradation is often dynamic due to the natural variability of loads.展开更多
In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of ...In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of rural power distribution lines voltage is analyzed. The real rural power distribution network simulation model is established by Power System Power System Analysis Software Package (PSASP). Simulation analysis the effect of series capacitor compensation technology to improve the voltage quality of rural power distribution network, The simulation results show that the series capacitor compensation can effectively improve the voltage quality and reduce network losses and improve the transmission capacity of rural power distribution network.展开更多
This paper presents a rotating parallel-plate capacitor;one of the plates is assumed to turn about the common vertical axis through the centers of the square plates. Viewing the problem from a purely geometrical point...This paper presents a rotating parallel-plate capacitor;one of the plates is assumed to turn about the common vertical axis through the centers of the square plates. Viewing the problem from a purely geometrical point of view, we evaluate the overlapping area of the plates as a function of the rotated angle. We then envision the rotation as being a mechanical continuous process. We consider two different rotation mechanisms: a uniform rotation with a constant angular velocity and, a rotation with a constant angular acceleration—we then evaluate the overlapping area as a continuous function of time. From the electrostatic point of view, the time-dependent overlapping area of the plates implies a time-dependent capacitor. Such a variable, a time-dependent capacitor has never been reported in literature. We insert this capacitor into a series with a resistor, forming a RC circuit. We analyze the characteristics of charging and discharging scenarios on two different parallel tracks. On the first track we drive the circuit with a DC power sup-ply. We study the implications of the rotation modes. We compare the response of each case to the corresponding tradi-tional constant capacitor of an equivalent RC circuit;the quantified results are intuitively just. On the second track, we drive the circuit with an AC source. Similar to the analysis of the first track, we generate the relevant electrical characteristics. In the latter case, we also analyze the sensitivity of the response of the circuit with respect to the fre-quency of the source. The analyses of the circuits encounter nontrivial differential equations. We utilize Mathematica [1] to solve these equations.展开更多
Nowadays the optimal allocation of distributed generation (DG) in the distribution network becomes the popular research area in restructuring of power system. The capacitor banks introduced in the distribution network...Nowadays the optimal allocation of distributed generation (DG) in the distribution network becomes the popular research area in restructuring of power system. The capacitor banks introduced in the distribution networks for reactive power compensation also have the capacity to minimize the real and reactive power losses occurred in the system. Hence, this research integrates the allocation of renewable energy DG and capacitor banks in the radial distribution network to minimize the real power loss occurred in the system. A two-stage methodology is used for simultaneous allocation of renewable DG and capacitor banks. The optimum location of renewable energy DG and capacitor banks is determined using the distributed generation sitting index (DGSI) ranking method and the optimum sizing of DG and capacitor banks is found out for simultaneous placement using weight improved particle swarm optimization algorithm (WIPSO) and self adaptive differential evolution algorithm (SADE). This two-stage methodology reduces the burden of SADE and WIPSO algorithm, by using the DGSI index in determining the optimal location. Hence the computational time gets reduced which makes them suitable for online applications. By using the above methodology, a comprehensive performance analysis is done on IEEE 33 bus and 69 bus RDNs and the results are discussed in detail.展开更多
Network reconfiguration and capacitor switching are important measures to reduce power loss and improve security and economy in automation of distribution. A new method based on parallel genetic algorithm is proposed ...Network reconfiguration and capacitor switching are important measures to reduce power loss and improve security and economy in automation of distribution. A new method based on parallel genetic algorithm is proposed to search the whole problem space for better solution. Multiple populations evolve independently and communicate periodically, which simulates parallel computing process to save computing time. The results show that the method is robust and has better benefit than the alterative iteration method. In addition, the effect of overall optimization is better than optimization alone. Power loss can be reduced and the level of voltage can be greatly improved.展开更多
文摘The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively applying mono-capacitor positioning, multiple positioning and reconfiguration processes using GA-based algorithms implemented in a Matlab environment. From the diagnostic study of this network, it was observed that a minimum voltage of 0.90 pu induces a voltage deviation of 5.26%, followed by active and reactive losses of 425.08 kW and 435.09 kVAR, respectively. Single placement with the NSGAII resulted in the placement of a 3000 kVAR capacitor at node 128, which proved to be the invariably neuralgic point. Multiple placements resulted in a 21.55% reduction in losses and a 0.74% regression in voltage profile performance. After topology optimization, the loss profile improved by 65.08% and the voltage profile improved by 1.05%. Genetic algorithms are efficient and effective tools for improving the performance of distribution networks, whose degradation is often dynamic due to the natural variability of loads.
文摘In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of rural power distribution lines voltage is analyzed. The real rural power distribution network simulation model is established by Power System Power System Analysis Software Package (PSASP). Simulation analysis the effect of series capacitor compensation technology to improve the voltage quality of rural power distribution network, The simulation results show that the series capacitor compensation can effectively improve the voltage quality and reduce network losses and improve the transmission capacity of rural power distribution network.
文摘This paper presents a rotating parallel-plate capacitor;one of the plates is assumed to turn about the common vertical axis through the centers of the square plates. Viewing the problem from a purely geometrical point of view, we evaluate the overlapping area of the plates as a function of the rotated angle. We then envision the rotation as being a mechanical continuous process. We consider two different rotation mechanisms: a uniform rotation with a constant angular velocity and, a rotation with a constant angular acceleration—we then evaluate the overlapping area as a continuous function of time. From the electrostatic point of view, the time-dependent overlapping area of the plates implies a time-dependent capacitor. Such a variable, a time-dependent capacitor has never been reported in literature. We insert this capacitor into a series with a resistor, forming a RC circuit. We analyze the characteristics of charging and discharging scenarios on two different parallel tracks. On the first track we drive the circuit with a DC power sup-ply. We study the implications of the rotation modes. We compare the response of each case to the corresponding tradi-tional constant capacitor of an equivalent RC circuit;the quantified results are intuitively just. On the second track, we drive the circuit with an AC source. Similar to the analysis of the first track, we generate the relevant electrical characteristics. In the latter case, we also analyze the sensitivity of the response of the circuit with respect to the fre-quency of the source. The analyses of the circuits encounter nontrivial differential equations. We utilize Mathematica [1] to solve these equations.
文摘Nowadays the optimal allocation of distributed generation (DG) in the distribution network becomes the popular research area in restructuring of power system. The capacitor banks introduced in the distribution networks for reactive power compensation also have the capacity to minimize the real and reactive power losses occurred in the system. Hence, this research integrates the allocation of renewable energy DG and capacitor banks in the radial distribution network to minimize the real power loss occurred in the system. A two-stage methodology is used for simultaneous allocation of renewable DG and capacitor banks. The optimum location of renewable energy DG and capacitor banks is determined using the distributed generation sitting index (DGSI) ranking method and the optimum sizing of DG and capacitor banks is found out for simultaneous placement using weight improved particle swarm optimization algorithm (WIPSO) and self adaptive differential evolution algorithm (SADE). This two-stage methodology reduces the burden of SADE and WIPSO algorithm, by using the DGSI index in determining the optimal location. Hence the computational time gets reduced which makes them suitable for online applications. By using the above methodology, a comprehensive performance analysis is done on IEEE 33 bus and 69 bus RDNs and the results are discussed in detail.
文摘Network reconfiguration and capacitor switching are important measures to reduce power loss and improve security and economy in automation of distribution. A new method based on parallel genetic algorithm is proposed to search the whole problem space for better solution. Multiple populations evolve independently and communicate periodically, which simulates parallel computing process to save computing time. The results show that the method is robust and has better benefit than the alterative iteration method. In addition, the effect of overall optimization is better than optimization alone. Power loss can be reduced and the level of voltage can be greatly improved.