Dear Editor,In this letter,several novel controllability results for a class of linear switched and impulsive systems are established.Different from the developed controllability conditions in most existing literature...Dear Editor,In this letter,several novel controllability results for a class of linear switched and impulsive systems are established.Different from the developed controllability conditions in most existing literature,the important role of switched and impulsive time sequence is considered.Applying the relevant geometric theory of matrix,a necessary and sufficient criterion for the controllability is firstly developed to judge when the controllability of such systems is affected by switched and impulsive time sequence.Furthermore,we further obtain a sufficient controllability condition that can be used to verify the controllability of such systems regardless of the switched and impulsive time sequence.Finally,a numerical example is given to verify the obtained theoretical results.展开更多
The exact feedback linearization method implies an accurate knowledge of the model and its parameters.This assumption is an inherent limitation of the method,suffering from robustness issues.In general,the model struc...The exact feedback linearization method implies an accurate knowledge of the model and its parameters.This assumption is an inherent limitation of the method,suffering from robustness issues.In general,the model structure is only partially known and its parameters present uncertainties.The current paper extends the classical exact feedback linearization to the robust feedback linearization by adding an appropriatelydesigned robust control layer.This is then able to ensure robust stability and robust performance for the given uncertain system in a desired region of attraction.We consider the case of full relative degree input-affine nonlinear systems,which are of great practical importance in the literature.The inner loop contains the feedback linearization input for the nominal system and the resulting residual nonlinearities can always be characterized as inverse additive uncertainties.The constructive proofs provide exact representations of the uncertainty models in three considered scenarios:unmatched,fully-matched,and partially-matched uncertainties.The uncertainty model will be a descriptor system,which also represents one of the novelties of the paper.Our approach leads to a simplified control structure and a less conservative coverage of the uncertainty set compared to current alternatives.The end-to-end procedure is emphasized on an illustrative example,in two different hypotheses.展开更多
This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulat...This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulated error between the current state and the latest control update exceeds a certain threshold,an event is triggered.Such a scheme can ensure the event-generator works at a relatively low rate rather than falls into hibernation especially after the system steps into its steady state.Second,the looped functional method for continuous-time systems is extended to discrete-time systems.By introducing an innovative looped functional that links the event-triggered scheme,some sufficient conditions for the co-design of control gain and event-triggered parameters are obtained in terms of linear matrix inequalities with a couple of tuning parameters.Then,the proposed method is applied to discrete-time systems with input saturation.As a result,both suitable control gains and event-triggered parameters are also co-designed to ensure the system trajectories converge to the region of attraction.Finally,an unstable reactor system and an inverted pendulum system are given to show the effectiveness of the proposed method.展开更多
Switched linear parameter varying(LPV)systems have,in recent years,inspired a great number of research endeavors owing to their excellent ability to approximate nonlinear systems and handle complex hybrid dynamics in ...Switched linear parameter varying(LPV)systems have,in recent years,inspired a great number of research endeavors owing to their excellent ability to approximate nonlinear systems and handle complex hybrid dynamics in system analysis and synthesis.Nevertheless,numerous difficulties and challenges are also encountered due to the reciprocal effects of switching signals and scheduling parameters in the analysis and synthesis of switched LPV systems.In this paper,the standard description and specific characteristics of switched LPV systems are first introduced.Then,the main methodologies are proposed in the literature to cope with stability and performance analysis,control synthesis,as well as fault diagnosis and fault-tolerant control issues,and the typical applications in various fields are surveyed.Finally,several key open problems and current research activities are also discussed to elucidate the potential research directions in the future.展开更多
It is a challenging issue to obtain the minimum amplitude control for linear systems subject to amplitudebounded disturbances.The difficulty is how to accurately give the quantitative relationship between the system H...It is a challenging issue to obtain the minimum amplitude control for linear systems subject to amplitudebounded disturbances.The difficulty is how to accurately give the quantitative relationship between the system H∞norm and control parameters.An optimal-Lyapunov-function-based controller design concept is proposed,and a minimum amplitude control scheme is presented under amplitude-bounded disturbances.Firstly,the optimal Lyapunov function is proposed by analyzing the geometric characteristics of the system H∞norm,and the necessary and sufficient condition of the optimal Lyapunov function parameter matrix is given.Secondly,the optimal Lyapunov function parameter matrix is constructed in the parameterized matrix equation,and the accurate quantitative relationship between the system H∞norm and control parameters is given.Finally,the control parameter optimization method is proposed according to the quantitative relationship between the system H∞norm and control parameters.Unlike robust optimization control methods,the presented minimum amplitude control scheme avoids the improper selection of the Lyapunov function in the controller design,and provides a novel way to design the minimum amplitude control under the given control accuracy.A buck converter example is given to illustrate the effectiveness and practicability of the presented scheme.展开更多
Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitr...Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitrary number of switching matrices.The exponential stability and instability(ESI)conditions so obtained involve the supremum and infimum of ratios of certain quadratic forms of the matrices,leading to global time-averages of their activity intervals.Further,motivated by linear switching system examples of(i)instability with stable matrices and(ii)stability with unstable matrices(found in the literature primarily for second-order systems),the proposed framework is generalized to establish ESI conditions that include both the activity intervals of the matrices and their switching rates,the latter being governed by a certain logarithmic measure of the normalized magnitudes of discontinuities caused by switching.In effect,(the new,globally averaged)dwell-time is flexibly traded,apparently for the first time,but under specific conditions(related,in part,to the eigenvalues of the matrices),for switching discontinuity-based conditions.Two further novel aspects of the proposed approach are:(i)For second-order matrices,switching lines in phase space can be chosen for periodic switching to stabilize or destabilize the system,and even generate oscillations,depending on the eigenvalues of the system matrices.But for third-(and higher)order matrices,such an analytically tractable(and controlled)periodical switching entails solution of an explicit non-convex multi-parameter optimization problem for which a stochastic optimization algorithm from the literature can be invoked.(ii)Lower and upper bounds on the solutions of the system equations can be quantified to reflect the stability/instability/oscillatory property of the system.Illustrative examples,which demonstrate the novelty of the derived stability and instability conditions,are presented in part 2 which is advisedly to be read along with this part 1 for a coherent merging of theory with practice.展开更多
In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by ...In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by applying them to second-andby,say,third-order linear switched systems with different eigenvalue structures to demonstrate the versatility,novelty and superiority(over many of the results found in the literature,especially for second-order switched lined systems)of the new theoretical results.The computational procedure that is employed with reference to the third-order systems is generic,in the sense that it is applicable to higher(i.e.,greater than third-)order linear switched systems.A pseudo-code for a computer implementation of the stability/instability conditions is also presented.With the principal aim of facilitating an independent reading of this part 2 of the paper,some crucial mathematical notations,definitions and results of part 1 have been repeated,thereby making the contents as self-contained as possible.展开更多
Dear Editor,Aiming at the consensus tracking problem of a class of unknown heterogeneous nonlinear multiagent systems(MASs)with input constraints,a novel data-driven iterative learning consensus control(ILCC)protocol ...Dear Editor,Aiming at the consensus tracking problem of a class of unknown heterogeneous nonlinear multiagent systems(MASs)with input constraints,a novel data-driven iterative learning consensus control(ILCC)protocol based on zeroing neural networks(ZNNs)is proposed.First,a dynamic linearization data model(DLDM)is acquired via dynamic linearization technology(DLT).展开更多
This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonli...In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonlinear systems, direct adaptive control schemes are presented to achieve bounded tracking. The proposed control schemes are robust with respect to the uncertainties in interconnection structure as well as subsystem dynamics. A numerical example is given to illustrate the efficiency of this method.展开更多
The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (...The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.展开更多
This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict...This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.展开更多
The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved b...A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved by the invariant eigenvalues and the gradually varying eigenvectors. A sufficient stability criterion is given by constructing a series of Lyapunov functions based on the selected discrete characteristic points. An important contribution is that it provides a simple and feasible approach for the design of gain-scheduled controllers for linear time-varying systems, which can guarantee both the global stability and the desired closed-loop performance of the resulted system. The method is applied to the design of a BTT missile autopilot and the simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.展开更多
In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the...In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.展开更多
A block diagonal form about a nonlinear system is defined. Based on the de finition, a design method ca1led block diagonal controller (BDC) is proPOsed bo feedbacklinearization. Thus, a linearization design of a class...A block diagonal form about a nonlinear system is defined. Based on the de finition, a design method ca1led block diagonal controller (BDC) is proPOsed bo feedbacklinearization. Thus, a linearization design of a class of nonlinear system can be simply re-alized. The result of design has been proved by mathematical simulation of a certain anti-ship missile.展开更多
A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop sy...A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
基金supported in part by the National Natural Science Foundation of China(62322311,62303162,62233007,62203157)the Technology Development Program of Henan Province(242102211052).
文摘Dear Editor,In this letter,several novel controllability results for a class of linear switched and impulsive systems are established.Different from the developed controllability conditions in most existing literature,the important role of switched and impulsive time sequence is considered.Applying the relevant geometric theory of matrix,a necessary and sufficient criterion for the controllability is firstly developed to judge when the controllability of such systems is affected by switched and impulsive time sequence.Furthermore,we further obtain a sufficient controllability condition that can be used to verify the controllability of such systems regardless of the switched and impulsive time sequence.Finally,a numerical example is given to verify the obtained theoretical results.
基金funded by the project new smart and adaptive robotics solutions for personalized minimally invasive surgery in cancer treatment−ATHENA,European Union-NextGenerationEU and Romanian Government,under National Recovery and Resilience Plan for Romania(CF116/15.11.2022)through the Romanian Ministry of Research,Innovation and Digitalization(within Component 9,investment I8)。
文摘The exact feedback linearization method implies an accurate knowledge of the model and its parameters.This assumption is an inherent limitation of the method,suffering from robustness issues.In general,the model structure is only partially known and its parameters present uncertainties.The current paper extends the classical exact feedback linearization to the robust feedback linearization by adding an appropriatelydesigned robust control layer.This is then able to ensure robust stability and robust performance for the given uncertain system in a desired region of attraction.We consider the case of full relative degree input-affine nonlinear systems,which are of great practical importance in the literature.The inner loop contains the feedback linearization input for the nominal system and the resulting residual nonlinearities can always be characterized as inverse additive uncertainties.The constructive proofs provide exact representations of the uncertainty models in three considered scenarios:unmatched,fully-matched,and partially-matched uncertainties.The uncertainty model will be a descriptor system,which also represents one of the novelties of the paper.Our approach leads to a simplified control structure and a less conservative coverage of the uncertainty set compared to current alternatives.The end-to-end procedure is emphasized on an illustrative example,in two different hypotheses.
基金supported in part by the National Natural Science Foundation of China(62473221)the Natural Science Foundation of Shandong Province,China(ZR2024MF006)Qingdao Natural Science Foundation(24-4-4-zrjj-165-jch)。
文摘This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulated error between the current state and the latest control update exceeds a certain threshold,an event is triggered.Such a scheme can ensure the event-generator works at a relatively low rate rather than falls into hibernation especially after the system steps into its steady state.Second,the looped functional method for continuous-time systems is extended to discrete-time systems.By introducing an innovative looped functional that links the event-triggered scheme,some sufficient conditions for the co-design of control gain and event-triggered parameters are obtained in terms of linear matrix inequalities with a couple of tuning parameters.Then,the proposed method is applied to discrete-time systems with input saturation.As a result,both suitable control gains and event-triggered parameters are also co-designed to ensure the system trajectories converge to the region of attraction.Finally,an unstable reactor system and an inverted pendulum system are given to show the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(62222310,61973131,62473379)the National Key Research and Develepment Program of China(2024YFB3310701)+1 种基金the Research Fund for the Taishan Scholar Project of Shandong Province of China,the Major Basic Research of Natural Science Foundation of Shandong Province(ZR2024ZD38,ZR2022ZD34)the Japan Society for the Promotion of Science(21K04129).
文摘Switched linear parameter varying(LPV)systems have,in recent years,inspired a great number of research endeavors owing to their excellent ability to approximate nonlinear systems and handle complex hybrid dynamics in system analysis and synthesis.Nevertheless,numerous difficulties and challenges are also encountered due to the reciprocal effects of switching signals and scheduling parameters in the analysis and synthesis of switched LPV systems.In this paper,the standard description and specific characteristics of switched LPV systems are first introduced.Then,the main methodologies are proposed in the literature to cope with stability and performance analysis,control synthesis,as well as fault diagnosis and fault-tolerant control issues,and the typical applications in various fields are surveyed.Finally,several key open problems and current research activities are also discussed to elucidate the potential research directions in the future.
基金supported in part by the National Natural Science Foundation of China(62373089).
文摘It is a challenging issue to obtain the minimum amplitude control for linear systems subject to amplitudebounded disturbances.The difficulty is how to accurately give the quantitative relationship between the system H∞norm and control parameters.An optimal-Lyapunov-function-based controller design concept is proposed,and a minimum amplitude control scheme is presented under amplitude-bounded disturbances.Firstly,the optimal Lyapunov function is proposed by analyzing the geometric characteristics of the system H∞norm,and the necessary and sufficient condition of the optimal Lyapunov function parameter matrix is given.Secondly,the optimal Lyapunov function parameter matrix is constructed in the parameterized matrix equation,and the accurate quantitative relationship between the system H∞norm and control parameters is given.Finally,the control parameter optimization method is proposed according to the quantitative relationship between the system H∞norm and control parameters.Unlike robust optimization control methods,the presented minimum amplitude control scheme avoids the improper selection of the Lyapunov function in the controller design,and provides a novel way to design the minimum amplitude control under the given control accuracy.A buck converter example is given to illustrate the effectiveness and practicability of the presented scheme.
文摘Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitrary number of switching matrices.The exponential stability and instability(ESI)conditions so obtained involve the supremum and infimum of ratios of certain quadratic forms of the matrices,leading to global time-averages of their activity intervals.Further,motivated by linear switching system examples of(i)instability with stable matrices and(ii)stability with unstable matrices(found in the literature primarily for second-order systems),the proposed framework is generalized to establish ESI conditions that include both the activity intervals of the matrices and their switching rates,the latter being governed by a certain logarithmic measure of the normalized magnitudes of discontinuities caused by switching.In effect,(the new,globally averaged)dwell-time is flexibly traded,apparently for the first time,but under specific conditions(related,in part,to the eigenvalues of the matrices),for switching discontinuity-based conditions.Two further novel aspects of the proposed approach are:(i)For second-order matrices,switching lines in phase space can be chosen for periodic switching to stabilize or destabilize the system,and even generate oscillations,depending on the eigenvalues of the system matrices.But for third-(and higher)order matrices,such an analytically tractable(and controlled)periodical switching entails solution of an explicit non-convex multi-parameter optimization problem for which a stochastic optimization algorithm from the literature can be invoked.(ii)Lower and upper bounds on the solutions of the system equations can be quantified to reflect the stability/instability/oscillatory property of the system.Illustrative examples,which demonstrate the novelty of the derived stability and instability conditions,are presented in part 2 which is advisedly to be read along with this part 1 for a coherent merging of theory with practice.
文摘In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by applying them to second-andby,say,third-order linear switched systems with different eigenvalue structures to demonstrate the versatility,novelty and superiority(over many of the results found in the literature,especially for second-order switched lined systems)of the new theoretical results.The computational procedure that is employed with reference to the third-order systems is generic,in the sense that it is applicable to higher(i.e.,greater than third-)order linear switched systems.A pseudo-code for a computer implementation of the stability/instability conditions is also presented.With the principal aim of facilitating an independent reading of this part 2 of the paper,some crucial mathematical notations,definitions and results of part 1 have been repeated,thereby making the contents as self-contained as possible.
基金supported by the National Nature Science Foundation of China(U21A20166)the Science and Technology Development Foundation of Jilin Province(20230508095RC)+2 种基金the Major Science and Technology Projects of Jilin Province and Changchun City(20220301033GX)the Development and Reform Commission Foundation of Jilin Province(2023C034-3)the Interdisciplinary Integration and Innovation Project of JLU(JLUXKJC2020202).
文摘Dear Editor,Aiming at the consensus tracking problem of a class of unknown heterogeneous nonlinear multiagent systems(MASs)with input constraints,a novel data-driven iterative learning consensus control(ILCC)protocol based on zeroing neural networks(ZNNs)is proposed.First,a dynamic linearization data model(DLDM)is acquired via dynamic linearization technology(DLT).
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.
文摘In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonlinear systems, direct adaptive control schemes are presented to achieve bounded tracking. The proposed control schemes are robust with respect to the uncertainties in interconnection structure as well as subsystem dynamics. A numerical example is given to illustrate the efficiency of this method.
文摘The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.
文摘This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (60474015)Program for Changjiang Scholars and Innovative Research Team in University
文摘A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved by the invariant eigenvalues and the gradually varying eigenvectors. A sufficient stability criterion is given by constructing a series of Lyapunov functions based on the selected discrete characteristic points. An important contribution is that it provides a simple and feasible approach for the design of gain-scheduled controllers for linear time-varying systems, which can guarantee both the global stability and the desired closed-loop performance of the resulted system. The method is applied to the design of a BTT missile autopilot and the simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.
基金supported in part by the National Key Research and Development Program of China(2018AAA0101502,2018YFB1702300)the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)。
文摘In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.
文摘A block diagonal form about a nonlinear system is defined. Based on the de finition, a design method ca1led block diagonal controller (BDC) is proPOsed bo feedbacklinearization. Thus, a linearization design of a class of nonlinear system can be simply re-alized. The result of design has been proved by mathematical simulation of a certain anti-ship missile.
文摘A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).