Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that as...Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that asynchronously report pixel-level brightness changes called’events’,stand out because of their ability to capture dynamic changes with minimal energy consumption,making them suitable for challenging conditions,such as low light or high-speed motion.However,current mapping and localization methods for event cameras depend primarily on point and line features,which struggle in sparse or low-feature environments and are unsuitable for static or slow-motion scenarios.We addressed these challenges by proposing a bio-inspired vision mapping and localization method using active LED markers(ALMs)combined with reprojection error optimization and asynchronous Kalman fusion.Our approach replaces traditional features with ALMs,thereby enabling accurate tracking under dynamic and low-feature conditions.The global mapping accuracy significantly improved by minimizing the reprojection error,with corner errors reduced from 16.8 cm to 3.1 cm after 400 iterations.The asynchronous Kalman fusion of multiple camera pose estimations from ALMs ensures precise localization with a high temporal efficiency.This method achieved a mean translation error of 0.078 m and a rotational error of 5.411°while evaluating dynamic motion.In addition,the method supported an output rate of 4.5 kHz while maintaining high localization accuracy in UAV spiral flight experiments.These results demonstrate the potential of the proposed approach for real-time robot localization in challenging environments.展开更多
目的基于T2^(*)mapping定量分析业余马拉松运动员足踝部关节软骨的T2^(*)值,并分析其与性别、年龄、身体质量指数(body mass index,BMI)、跑龄、跑量之间的相关性。材料与方法于2023年7月份至2023年9月份招募重庆市长跑运动爱好者48名,...目的基于T2^(*)mapping定量分析业余马拉松运动员足踝部关节软骨的T2^(*)值,并分析其与性别、年龄、身体质量指数(body mass index,BMI)、跑龄、跑量之间的相关性。材料与方法于2023年7月份至2023年9月份招募重庆市长跑运动爱好者48名,其中跑量<300 km/月的36例(中低跑量组),跑量≥300 km/月的12例(高跑量组)。所有受试者均进行单侧无症状踝关节的MRI扫描,扫描序列包括T2^(*)mapping多回波自旋回波(spin echo,SE)序列矢状位、质子密度加权成像脂肪抑制(proton density-weighted imaging fat-saturated,PDWI-FS)序列矢状位、冠状位、横轴位以及T1加权脂肪抑制成像(T1-weighted imaging fat-saturated,T1WI-FS)序列横轴位。沿关节软骨轮廓边缘勾画距骨穹窿、跟骰关节跟骨面、骰骨面及后距下关节跟骨面、距骨面软骨作为感兴趣区(region of interest,ROI),获得相应的T2^(*)值。采用线性回归分析软骨T2^(*)值与年龄、BMI、跑龄的相关性,采用独立样本t检验分析不同跑量及不同性别间的软骨T2^(*)值差异。结果(1)距骨穹窿、跟骰关节跟骨面及骰骨面、后距下关节跟骨面及距骨面软骨T2^(*)值在性别上的差异均具有统计学意义(P=0.001、P<0.001、P=0.002、P=0.008、P=0.004);(2)高跑量组的距骨穹窿、后距下关节跟骨面软骨T2^(*)值高于中低跑量组(P=0.014、0.023),不同跑量的跟骰关节跟骨面及骰骨面、后距下关节距骨面软骨T2^(*)值的差异均无统计学意义(P=0.987、0.072、0.724);(3)距骨穹窿、跟骰关节跟骨面及骰骨面、后距下关节跟骨面、距骨面软骨T2^(*)值均与BMI呈正相关(r=0.376、0.384、0.300、0.422、0.455,P=0.005、0.004、0.019、0.001、0.001)。结论在业余马拉松运动员这一跑步群体中,与中低跑量相比,高跑量更有可能导致距骨穹窿、后距下关节跟骨面软骨损伤;而与较低的BMI相比,高BMI增加了距骨穹窿、跟骰关节跟骨面、骰骨面及后距下关节跟骨面、距骨面软骨损伤的风险。展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage...Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage resistance to powdery mildew over consecutive years.Genetic analysis of H1-707 at the seedling stage revealed a dominant monogenic inheritance pattern,and the underlying gene was designated Pm71.By employing bulked segregant exome sequencing(BSE-Seq)and using 2000 F2:3 families,Pm71 was fine mapped to a 336-kb interval on chromosome arm 6AS by referencing to the durum cv.Svevo RefSeq 1.0.Collinearity analysis revealed high homology in the candidate interval between Svevo and six Triticum species.Among six high-confidence genes annotated within this interval,TRITD6Av1G005050 encoding a GDSL esterase/lipase was identified as a key candidate for Pm71.展开更多
Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System A...Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System Algorithm(ACSA).The control of the circulatory system inspires it and mimics the behavior of hormonal and neural regulators involved in this process.The work initially evaluates the effectiveness of the suggested approach on 16 two-dimensional test functions,identified as classical benchmark functions.The method was subsequently examined by application to 12 CEC 2022 benchmark problems of different complexities.Furthermore,the paper evaluates ACSA in comparison to 64 metaheuristic methods that are derived from different approaches,including evolutionary,human,physics,and swarm-based.Subsequently,a sequence of statistical tests was undertaken to examine the superiority of the suggested algorithm in comparison to the 7 most widely used algorithms in the existing literature.The results show that the ACSA strategy can quickly reach the global optimum,avoid getting trapped in local optima,and effectively maintain a balance between exploration and exploitation.ACSA outperformed 42 algorithms statistically,according to post-hoc tests.It also outperformed 9 algorithms quantitatively.The study concludes that ACSA offers competitive solutions in comparison to popüler methods.展开更多
There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and grea...There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft.展开更多
基金Supported by Beijing Natural Science Foundation(Grant No.L231004)Young Elite Scientists Sponsorship Program by CAST(Grant No.2022QNRC001)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.2025JBMC039)National Key Research and Development Program(Grant No.2022YFC2805200)National Natural Science Foundation of China(Grant No.52371338).
文摘Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that asynchronously report pixel-level brightness changes called’events’,stand out because of their ability to capture dynamic changes with minimal energy consumption,making them suitable for challenging conditions,such as low light or high-speed motion.However,current mapping and localization methods for event cameras depend primarily on point and line features,which struggle in sparse or low-feature environments and are unsuitable for static or slow-motion scenarios.We addressed these challenges by proposing a bio-inspired vision mapping and localization method using active LED markers(ALMs)combined with reprojection error optimization and asynchronous Kalman fusion.Our approach replaces traditional features with ALMs,thereby enabling accurate tracking under dynamic and low-feature conditions.The global mapping accuracy significantly improved by minimizing the reprojection error,with corner errors reduced from 16.8 cm to 3.1 cm after 400 iterations.The asynchronous Kalman fusion of multiple camera pose estimations from ALMs ensures precise localization with a high temporal efficiency.This method achieved a mean translation error of 0.078 m and a rotational error of 5.411°while evaluating dynamic motion.In addition,the method supported an output rate of 4.5 kHz while maintaining high localization accuracy in UAV spiral flight experiments.These results demonstrate the potential of the proposed approach for real-time robot localization in challenging environments.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
基金financially supported by National Natural Science Foundation of China(32301800,32301923 and 32072053)Wheat Industrial Technology System of Shandong Province(SDAIT-01-01)Key Research and Development Project of Shandong Province(2022LZG002-4,2023LZGC009-4-4).
文摘Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage resistance to powdery mildew over consecutive years.Genetic analysis of H1-707 at the seedling stage revealed a dominant monogenic inheritance pattern,and the underlying gene was designated Pm71.By employing bulked segregant exome sequencing(BSE-Seq)and using 2000 F2:3 families,Pm71 was fine mapped to a 336-kb interval on chromosome arm 6AS by referencing to the durum cv.Svevo RefSeq 1.0.Collinearity analysis revealed high homology in the candidate interval between Svevo and six Triticum species.Among six high-confidence genes annotated within this interval,TRITD6Av1G005050 encoding a GDSL esterase/lipase was identified as a key candidate for Pm71.
文摘Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System Algorithm(ACSA).The control of the circulatory system inspires it and mimics the behavior of hormonal and neural regulators involved in this process.The work initially evaluates the effectiveness of the suggested approach on 16 two-dimensional test functions,identified as classical benchmark functions.The method was subsequently examined by application to 12 CEC 2022 benchmark problems of different complexities.Furthermore,the paper evaluates ACSA in comparison to 64 metaheuristic methods that are derived from different approaches,including evolutionary,human,physics,and swarm-based.Subsequently,a sequence of statistical tests was undertaken to examine the superiority of the suggested algorithm in comparison to the 7 most widely used algorithms in the existing literature.The results show that the ACSA strategy can quickly reach the global optimum,avoid getting trapped in local optima,and effectively maintain a balance between exploration and exploitation.ACSA outperformed 42 algorithms statistically,according to post-hoc tests.It also outperformed 9 algorithms quantitatively.The study concludes that ACSA offers competitive solutions in comparison to popüler methods.
基金supported by the Basic Research Development Program of China(No.JCKY2021607B036)the National Natural Science Foundation of China(No.52275512).
文摘There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft.