With the rapid development of the internet, internet of things, mobile internet, and cloud computing, the amount of data in circulation has grown rapidly. More social information has contributed to the growth of big d...With the rapid development of the internet, internet of things, mobile internet, and cloud computing, the amount of data in circulation has grown rapidly. More social information has contributed to the growth of big data, and data has become a core asset. Big data is challenging in terms of effective storage, efficient computation and analysis, and deep data mining. In this paper, we discuss the signif- icance of big data and discuss key technologies and problems in big-data analyties. We also discuss the future prospects of big-data analylics.展开更多
This paper describes the fundamentals of cloud computing and current big-data key technologies. We categorize big-da- ta processing as batch-based, stream-based, graph-based, DAG-based, interactive-based, or visual-ba...This paper describes the fundamentals of cloud computing and current big-data key technologies. We categorize big-da- ta processing as batch-based, stream-based, graph-based, DAG-based, interactive-based, or visual-based according to the processing technique. We highlight the strengths and weaknesses of various big-data cloud processing techniques in order to help the big-data community select the appropri- ate processing technique. We also provide big data research challenges and future directions in aspect to transportation management systems.展开更多
面向作物表型组大数据获取解析、作物种质资源表型鉴定等亟需高效率、智能化和低成本技术、装备及系统的问题,在系统梳理分析国内外农作物高通量表型平台相关技术产品研究现状的基础上,通过组织多学科的协同技术攻关,突破了作物表型组...面向作物表型组大数据获取解析、作物种质资源表型鉴定等亟需高效率、智能化和低成本技术、装备及系统的问题,在系统梳理分析国内外农作物高通量表型平台相关技术产品研究现状的基础上,通过组织多学科的协同技术攻关,突破了作物表型组大数据高通量获取和智能化解析中的关键技术难题,设计了具有自主知识产权的轻小敏捷型多传感器阵列、通用化成像单元和适用于多生境的固定式、移动式高通量表型平台装备,以及配套算法和软件平台,构建了农作物表型组大数据工厂成套技术装备体系。该体系由大田和设施作物高通量自主作业表型平台、室内器官和显微表型平台、大田和设施环境自动化种植管控设备、作物模型系统、数字孪生智慧管控平台和大数据计算服务中心等构成,可实现多生境、自动化、高通量、高效率、高精度的多源作物表型-环境数据协同采集,涵盖农作物群体、个体、器官和显微多重尺度,能够重建农林作物的三维形态结构并精准解析株型、产品、品质、抗性等表型组指标,是发展数字育种和智慧栽培的新一代信息化基础设施。农作物表型组大数据工厂技术装备体系创新了作物表型组大数据的产生、处理和服务模式,可为作物表型组理论技术的发展、基于AI for Science的平台化科研和工厂化的作物种质资源表型鉴定等提供体系化的技术装备支撑。展开更多
文摘With the rapid development of the internet, internet of things, mobile internet, and cloud computing, the amount of data in circulation has grown rapidly. More social information has contributed to the growth of big data, and data has become a core asset. Big data is challenging in terms of effective storage, efficient computation and analysis, and deep data mining. In this paper, we discuss the signif- icance of big data and discuss key technologies and problems in big-data analyties. We also discuss the future prospects of big-data analylics.
基金supported in part by the National Basic Research Program(973 Program,No.2015CB352400)NSFC under grant U1401258U.S NSF under grant CCF-1016966
文摘This paper describes the fundamentals of cloud computing and current big-data key technologies. We categorize big-da- ta processing as batch-based, stream-based, graph-based, DAG-based, interactive-based, or visual-based according to the processing technique. We highlight the strengths and weaknesses of various big-data cloud processing techniques in order to help the big-data community select the appropri- ate processing technique. We also provide big data research challenges and future directions in aspect to transportation management systems.
文摘面向作物表型组大数据获取解析、作物种质资源表型鉴定等亟需高效率、智能化和低成本技术、装备及系统的问题,在系统梳理分析国内外农作物高通量表型平台相关技术产品研究现状的基础上,通过组织多学科的协同技术攻关,突破了作物表型组大数据高通量获取和智能化解析中的关键技术难题,设计了具有自主知识产权的轻小敏捷型多传感器阵列、通用化成像单元和适用于多生境的固定式、移动式高通量表型平台装备,以及配套算法和软件平台,构建了农作物表型组大数据工厂成套技术装备体系。该体系由大田和设施作物高通量自主作业表型平台、室内器官和显微表型平台、大田和设施环境自动化种植管控设备、作物模型系统、数字孪生智慧管控平台和大数据计算服务中心等构成,可实现多生境、自动化、高通量、高效率、高精度的多源作物表型-环境数据协同采集,涵盖农作物群体、个体、器官和显微多重尺度,能够重建农林作物的三维形态结构并精准解析株型、产品、品质、抗性等表型组指标,是发展数字育种和智慧栽培的新一代信息化基础设施。农作物表型组大数据工厂技术装备体系创新了作物表型组大数据的产生、处理和服务模式,可为作物表型组理论技术的发展、基于AI for Science的平台化科研和工厂化的作物种质资源表型鉴定等提供体系化的技术装备支撑。