In the transition of China’s economy from high-speed growth to high-quality growth in the new era,economic practices are oriented to fostering new growth drivers,developing new industries,and forming new models.Based...In the transition of China’s economy from high-speed growth to high-quality growth in the new era,economic practices are oriented to fostering new growth drivers,developing new industries,and forming new models.Based on the data flow,big data effectively integrates technology,material,fund,and human resource flows and reveals new paths for the development of new growth drivers,new industries and new models.Adopting an analytical framework with"macro-meso-micro"levels,this paper elaborates on the theoretical mechanisms by which big data drives high-quality growth through efficiency improvements,upgrades of industrial structures,and business model innovations.It also explores the practical foundations for big data driven high-quality growth including technological advancements of big data,the development of big data industries,and the formulation of big data strategies.Finally,this paper proposes policy options for big data promoting high-quality growth in terms of developing digital economy,consolidating the infrastructure construction of big data,expediting convergence of big data and the real economy,advocating for a big data culture,and expanding financing options for big data.展开更多
The advent of the big data era has made data visualization a crucial tool for enhancing the efficiency and insights of data analysis. This theoretical research delves into the current applications and potential future...The advent of the big data era has made data visualization a crucial tool for enhancing the efficiency and insights of data analysis. This theoretical research delves into the current applications and potential future trends of data visualization in big data analysis. The article first systematically reviews the theoretical foundations and technological evolution of data visualization, and thoroughly analyzes the challenges faced by visualization in the big data environment, such as massive data processing, real-time visualization requirements, and multi-dimensional data display. Through extensive literature research, it explores innovative application cases and theoretical models of data visualization in multiple fields including business intelligence, scientific research, and public decision-making. The study reveals that interactive visualization, real-time visualization, and immersive visualization technologies may become the main directions for future development and analyzes the potential of these technologies in enhancing user experience and data comprehension. The paper also delves into the theoretical potential of artificial intelligence technology in enhancing data visualization capabilities, such as automated chart generation, intelligent recommendation of visualization schemes, and adaptive visualization interfaces. The research also focuses on the role of data visualization in promoting interdisciplinary collaboration and data democratization. Finally, the paper proposes theoretical suggestions for promoting data visualization technology innovation and application popularization, including strengthening visualization literacy education, developing standardized visualization frameworks, and promoting open-source sharing of visualization tools. This study provides a comprehensive theoretical perspective for understanding the importance of data visualization in the big data era and its future development directions.展开更多
基金funded by the Program for “Sanqin Scholar Innovation Teams in Shanxi Province”(SZTZ [2018] No.34)“the Research on the Mechanism,Effect Evaluation,and Policy Support of Replacing Business Tax with VAT In Promoting the Industrial Structure Upgrade of China” funded by the Humanity and Social Science Youth Foundation of the Ministry of Education of China(18YJC790078)“the Evaluation and Study of the Effect of Promoting Industrial Transformation and Upgrade of Shaanxi by Replacing Business Tax with Value-added Tax” funded by the Social Science Foundation Project of Shanxi Province(2017D037)
文摘In the transition of China’s economy from high-speed growth to high-quality growth in the new era,economic practices are oriented to fostering new growth drivers,developing new industries,and forming new models.Based on the data flow,big data effectively integrates technology,material,fund,and human resource flows and reveals new paths for the development of new growth drivers,new industries and new models.Adopting an analytical framework with"macro-meso-micro"levels,this paper elaborates on the theoretical mechanisms by which big data drives high-quality growth through efficiency improvements,upgrades of industrial structures,and business model innovations.It also explores the practical foundations for big data driven high-quality growth including technological advancements of big data,the development of big data industries,and the formulation of big data strategies.Finally,this paper proposes policy options for big data promoting high-quality growth in terms of developing digital economy,consolidating the infrastructure construction of big data,expediting convergence of big data and the real economy,advocating for a big data culture,and expanding financing options for big data.
文摘The advent of the big data era has made data visualization a crucial tool for enhancing the efficiency and insights of data analysis. This theoretical research delves into the current applications and potential future trends of data visualization in big data analysis. The article first systematically reviews the theoretical foundations and technological evolution of data visualization, and thoroughly analyzes the challenges faced by visualization in the big data environment, such as massive data processing, real-time visualization requirements, and multi-dimensional data display. Through extensive literature research, it explores innovative application cases and theoretical models of data visualization in multiple fields including business intelligence, scientific research, and public decision-making. The study reveals that interactive visualization, real-time visualization, and immersive visualization technologies may become the main directions for future development and analyzes the potential of these technologies in enhancing user experience and data comprehension. The paper also delves into the theoretical potential of artificial intelligence technology in enhancing data visualization capabilities, such as automated chart generation, intelligent recommendation of visualization schemes, and adaptive visualization interfaces. The research also focuses on the role of data visualization in promoting interdisciplinary collaboration and data democratization. Finally, the paper proposes theoretical suggestions for promoting data visualization technology innovation and application popularization, including strengthening visualization literacy education, developing standardized visualization frameworks, and promoting open-source sharing of visualization tools. This study provides a comprehensive theoretical perspective for understanding the importance of data visualization in the big data era and its future development directions.