Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medi...Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions).展开更多
本文主要研究一维扩展的Fisher-Kolmogorov方程的有效数值算法。通过结合BDF2时间离散格式与直接间断有限元算法对一维扩展的Fisher-Kolmogorov方程进行求解。首先,引入辅助变量,将四阶的扩展的Fisher-Kolmogorov方程转化为低阶耦合方程...本文主要研究一维扩展的Fisher-Kolmogorov方程的有效数值算法。通过结合BDF2时间离散格式与直接间断有限元算法对一维扩展的Fisher-Kolmogorov方程进行求解。首先,引入辅助变量,将四阶的扩展的Fisher-Kolmogorov方程转化为低阶耦合方程,然后利用直接间断有限元求解耦合方程,最后使用BDF2方法,对时间格式进行离散。本文给出了详细的数值算法,并通过一个一维算例进行数值试验,验证了算法的有效性和收敛性。This paper mainly studies the effective numerical algorithm for the one-dimensional extended Fisher-Kolmogorov equation. By combining the BDF2 time discretization format with the direct discontinuous finite element algorithm, the one-dimensional extended Fisher-Kolmogorov equation is solved. Firstly, an auxiliary variable is introduced to transform the fourth-order extended Fisher-Kolmogorov equation into a low-order coupled equation. Then, the coupled equation is solved by using the direct discontinuous finite element method. Finally, the BDF2 method is used to discretize the time scheme. The detailed numerical algorithm is presented in this paper, and a one-dimensional example is used for numerical experiments to verify the effectiveness and convergence of the algorithm.展开更多
The purpose of the current article is to study the H^(1)-stability for all positive time of the linearly extrapolated BDF2 timestepping scheme for the magnetohydrodynamics and Boussinesq equations.Specifically,we disc...The purpose of the current article is to study the H^(1)-stability for all positive time of the linearly extrapolated BDF2 timestepping scheme for the magnetohydrodynamics and Boussinesq equations.Specifically,we discretize in time using the linearly backward differentiation formula,and by employing both the discrete Gronwall lemma and the discrete uniform Gronwall lemma,we establish that each numerical scheme is uniformly bounded in the H^(1)-norm.展开更多
针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳...针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳定性.其次,利用逼近解的有界性得到关于其原始变量u的一个超逼近结果,进而得到其中间变量q的超逼近结果.最后利用一个算例验证理论结果的正确性.展开更多
The second-order backward differential formula(BDF2)and the scalar auxiliary variable(SAV)approach are applied to con‐struct the linearly energy stable numerical scheme with the variable time steps for the epitaxial ...The second-order backward differential formula(BDF2)and the scalar auxiliary variable(SAV)approach are applied to con‐struct the linearly energy stable numerical scheme with the variable time steps for the epitaxial thin film growth models.Under the stepratio condition 0<τ_(n)/τ_(n-1)<4.864,the modified energy dissipation law is proven at the discrete levels with regardless of time step size.Nu‐merical experiments are presented to demonstrate the accuracy and efficiency of the proposed numerical scheme.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.:82222068,82070423,82270348,and 82173779)the Innovation Team and Talents Cultivation Pro-gram of National Administration of Traditional Chinese Medicine,China(Grant No:ZYYCXTD-D-202206)+1 种基金Fujian Province Science and Technology Project,China(Grant Nos.:2021J01420479,2021J02058,2022J011374,and 2022J02057)Fundamental Research Funds for the Chinese Central Universities,China(Grant No.:20720230070).
文摘Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions).
文摘本文主要研究一维扩展的Fisher-Kolmogorov方程的有效数值算法。通过结合BDF2时间离散格式与直接间断有限元算法对一维扩展的Fisher-Kolmogorov方程进行求解。首先,引入辅助变量,将四阶的扩展的Fisher-Kolmogorov方程转化为低阶耦合方程,然后利用直接间断有限元求解耦合方程,最后使用BDF2方法,对时间格式进行离散。本文给出了详细的数值算法,并通过一个一维算例进行数值试验,验证了算法的有效性和收敛性。This paper mainly studies the effective numerical algorithm for the one-dimensional extended Fisher-Kolmogorov equation. By combining the BDF2 time discretization format with the direct discontinuous finite element algorithm, the one-dimensional extended Fisher-Kolmogorov equation is solved. Firstly, an auxiliary variable is introduced to transform the fourth-order extended Fisher-Kolmogorov equation into a low-order coupled equation. Then, the coupled equation is solved by using the direct discontinuous finite element method. Finally, the BDF2 method is used to discretize the time scheme. The detailed numerical algorithm is presented in this paper, and a one-dimensional example is used for numerical experiments to verify the effectiveness and convergence of the algorithm.
文摘The purpose of the current article is to study the H^(1)-stability for all positive time of the linearly extrapolated BDF2 timestepping scheme for the magnetohydrodynamics and Boussinesq equations.Specifically,we discretize in time using the linearly backward differentiation formula,and by employing both the discrete Gronwall lemma and the discrete uniform Gronwall lemma,we establish that each numerical scheme is uniformly bounded in the H^(1)-norm.
文摘针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳定性.其次,利用逼近解的有界性得到关于其原始变量u的一个超逼近结果,进而得到其中间变量q的超逼近结果.最后利用一个算例验证理论结果的正确性.
文摘The second-order backward differential formula(BDF2)and the scalar auxiliary variable(SAV)approach are applied to con‐struct the linearly energy stable numerical scheme with the variable time steps for the epitaxial thin film growth models.Under the stepratio condition 0<τ_(n)/τ_(n-1)<4.864,the modified energy dissipation law is proven at the discrete levels with regardless of time step size.Nu‐merical experiments are presented to demonstrate the accuracy and efficiency of the proposed numerical scheme.