在强光照射下,CdS量子点易发生光腐蚀现象,通过金属掺杂和复合的方式可以提高CdS的光催化性能和光稳定性。采用水热法合成了Zn掺杂CdS/g-C_(3)N_(4)复合纳米材料(Zn-CdS/g-C_(3)N_(4))。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、...在强光照射下,CdS量子点易发生光腐蚀现象,通过金属掺杂和复合的方式可以提高CdS的光催化性能和光稳定性。采用水热法合成了Zn掺杂CdS/g-C_(3)N_(4)复合纳米材料(Zn-CdS/g-C_(3)N_(4))。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和傅里叶变换红外光谱(FT-IR)等手段对Zn-CdS/g-C_(3)N_(4)复合材料的形貌、结构和组成等进行了表征。结果表明,Zn-CdS纳米颗粒附着在g-C_(3)N_(4)表面上,从而形成Zn-CdS/g-C_(3)N_(4)复合材料,且复合后材料带隙减小,光生电子-空穴复合率降低。在500 W Xe灯照射下,研究了Zn-CdS/g-C_(3)N_(4)对罗丹明B(RhB)的光催化降解性能。在最优条件下,光照40 min后,所制备的Zn-CdS/g-C_(3)N_(4)对RhB的光催化降解效率达99%。此外,所合成的Zn-CdS/g-C_(3)N_(4)复合材料光稳定性较高、可再生性好。这归因于Zn和Cd的协同作用以及与g-C_(3)N_(4)的复合,促进了光生载流子的分离和转移。展开更多
In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycl...In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycline antibiotics from reclaimed wastewater.A series of characterizations were utilized to confirm the successful synthesis of the adsorbent and this β-CD/NaAlg presented a three-dimensional network at the nanoscale or microscale.Under optimal conditions(pH=4,t=8 h,β-CD:NaAlg=9,adsorbent dosage = 1.5 g·L-1),the maximum removal rate of β-CD/NaAlg to tetracycline was 70%.The adsorption behavior of tetracycline on β-CD/NaAlg conformed to the Freundlich isotherm model(R2=0.9977) and the pseudo-second-order kinetic model(R^(2)=0.9993).Moreover,the adsorbent still removed 55.3% of tetracycline after five cycles.Specially,the adsorbent was integrated with ultrafiltration to adsorb tetracycline antibiotics from simulated reclaimed wastewater,and the removal rate of tetracycline reached 78.9% within 2 h.The existence of Cr(Ⅵ) had a negligible impact on tetracycline removal,while the presence of humic acid exhibited a promoting effect.The possible adsorption mechanisms were also elucidated through X-ray photoelectron spectroscopy and density functional theory analysis.In summary,β-CD/NaAlg represents an environmentally friendly,efficient,and sustainable adsorbent for removing tetracycline antibiotics from reclaimed water.展开更多
A capillary electrophoresis (CE) method has been firstly used for the separation of the therapeutically important xanthones from Securidaca inappendiculata. The separation of the nine xanthones was systematically opt...A capillary electrophoresis (CE) method has been firstly used for the separation of the therapeutically important xanthones from Securidaca inappendiculata. The separation of the nine xanthones was systematically optimized with respect to pH, concentration of running buffers, addition of sulfated b-CD, applied voltage and column temperature. Baseline separation was achieved for the nine xanthones in less than 15 minutes using a background electrolyte consisting of 200 mmol/L borate (pH 9.5) and 10 mmol/L sulfated b-CD.展开更多
文摘在强光照射下,CdS量子点易发生光腐蚀现象,通过金属掺杂和复合的方式可以提高CdS的光催化性能和光稳定性。采用水热法合成了Zn掺杂CdS/g-C_(3)N_(4)复合纳米材料(Zn-CdS/g-C_(3)N_(4))。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和傅里叶变换红外光谱(FT-IR)等手段对Zn-CdS/g-C_(3)N_(4)复合材料的形貌、结构和组成等进行了表征。结果表明,Zn-CdS纳米颗粒附着在g-C_(3)N_(4)表面上,从而形成Zn-CdS/g-C_(3)N_(4)复合材料,且复合后材料带隙减小,光生电子-空穴复合率降低。在500 W Xe灯照射下,研究了Zn-CdS/g-C_(3)N_(4)对罗丹明B(RhB)的光催化降解性能。在最优条件下,光照40 min后,所制备的Zn-CdS/g-C_(3)N_(4)对RhB的光催化降解效率达99%。此外,所合成的Zn-CdS/g-C_(3)N_(4)复合材料光稳定性较高、可再生性好。这归因于Zn和Cd的协同作用以及与g-C_(3)N_(4)的复合,促进了光生载流子的分离和转移。
基金supported by the National Key Research and Development Program of China(2022YFC3801101)National Natural Science Foundation of China(52170028)+1 种基金the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(2023DX11)National Engineering Research Center for Safe Sludge Disposal and Resource Recovery(2021A003).
文摘In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycline antibiotics from reclaimed wastewater.A series of characterizations were utilized to confirm the successful synthesis of the adsorbent and this β-CD/NaAlg presented a three-dimensional network at the nanoscale or microscale.Under optimal conditions(pH=4,t=8 h,β-CD:NaAlg=9,adsorbent dosage = 1.5 g·L-1),the maximum removal rate of β-CD/NaAlg to tetracycline was 70%.The adsorption behavior of tetracycline on β-CD/NaAlg conformed to the Freundlich isotherm model(R2=0.9977) and the pseudo-second-order kinetic model(R^(2)=0.9993).Moreover,the adsorbent still removed 55.3% of tetracycline after five cycles.Specially,the adsorbent was integrated with ultrafiltration to adsorb tetracycline antibiotics from simulated reclaimed wastewater,and the removal rate of tetracycline reached 78.9% within 2 h.The existence of Cr(Ⅵ) had a negligible impact on tetracycline removal,while the presence of humic acid exhibited a promoting effect.The possible adsorption mechanisms were also elucidated through X-ray photoelectron spectroscopy and density functional theory analysis.In summary,β-CD/NaAlg represents an environmentally friendly,efficient,and sustainable adsorbent for removing tetracycline antibiotics from reclaimed water.
基金The authors would like to acknowledge Agilent Technologies for providing the capillary electrophoresis system and Bioanalytical System for present of sulfated b-CD. The study is supported by NSFC Grant No. 29875001.
文摘A capillary electrophoresis (CE) method has been firstly used for the separation of the therapeutically important xanthones from Securidaca inappendiculata. The separation of the nine xanthones was systematically optimized with respect to pH, concentration of running buffers, addition of sulfated b-CD, applied voltage and column temperature. Baseline separation was achieved for the nine xanthones in less than 15 minutes using a background electrolyte consisting of 200 mmol/L borate (pH 9.5) and 10 mmol/L sulfated b-CD.