This study represents a pioneering effort to analyze the impact of avalanches descending into Morskie Oko from Marchwiczny Gully,the most active avalanche path around the lake.It focuses on catastrophic avalanches tha...This study represents a pioneering effort to analyze the impact of avalanches descending into Morskie Oko from Marchwiczny Gully,the most active avalanche path around the lake.It focuses on catastrophic avalanches that descended from the analyzed gully,as reported in the literature from the 1900s until now.However,only the data collected in recent years,our field studies,combined with modern LIDAR data and GIS-based modeling,allowed us to perform a detailed analysis.The GIS-based approach effectively uses spatial data to address snow avalanche modeling challenges.Although the study area lies within Tatra National Park,no official services carry out systematic avalanche monitoring or measurements.The impact of hazardous events,such as snow avalanches,on the most famous Polish mountain lake,Morskie Oko,has been poorly described in the literature and has yet to be discovered.Therefore,to analyze the selected avalanche parameters,we mainly used our ground and additional aerial photographs taken by local mountain services and related field measurements.Our analysis resulted in figurative estimates of the extent and volume of avalanche snow and its weight,both on the surface of the ice sheet and the part of the avalanche that did not reach the lake's shore and remained on the slope of Marchwiczny Gully.For example,the values for the mighty avalanche on February 3,2023,are 23,500 m~3 and 4,700 tons on the ice surface and 20,000 m~3 and 4,000 tons on the slope.It was determined that avalanches that descend onto the studied lake's surface result in its shallowing.This process occurs because of sedimentation of slope material carried by avalanches,especially during the final phase of ice cover melting.When openings appear in the solid ice cover in spring,floating ice can migrate,driven by wind pressure,and deposit avalanche material in various parts of the lake bottom.Thus,avalanches contributed to the gradual disappearance of the lake.展开更多
Air blasts induced by rock-ice avalanches are common natural phenomena known for their far-field destructive impact.In this study,remote sensing images,eyewitness videos and numerical modelling were comprehensively ap...Air blasts induced by rock-ice avalanches are common natural phenomena known for their far-field destructive impact.In this study,remote sensing images,eyewitness videos and numerical modelling were comprehensively applied to analyze the initiation and propagation of the 2021 Chamoli avalancheinduced air blast.Our findings indicate that air blasts are observed from the avalanche source area to the Rishiganga valley,but nearly disappear in the Dhauliganga valley.The most intense air blast is concentrated on the left side of Ronti Gad valley,with maximum velocity and pressure estimated at over 70 m/s and 20 kPa,respectively.Such high pressure results in widespread tree breakage in the area.Based on the analysis of the Chamoli event,we further discussed the potential contribution of the avalanche flow regime,avalanche dynamics and geomorphology to the destructive potential of air blasts.Rapidly moved sliding mass can impart the air blast a high initial momentum,and this process will be exaggerated when the avalanche impacts valley walls at bends.However,when the rock-ice avalanche transforms into a debris-enriched flash flood,free water within the flowing mass can displace air,inhibiting the generation of air blasts.Our work offers new insights into the generation and propagation of rock-ice avalanche-induced air blasts,underscoring the importance of including this type of hazard during avalanche risk assessment in high-altitude glacial regions.展开更多
The dynamic avalanche effect is a critical factor influencing the performance and reliability of the field-stop insulated gate bipolar transistors(FS-IGBT).Unclamped inductive switching(UIS)is the primary method for t...The dynamic avalanche effect is a critical factor influencing the performance and reliability of the field-stop insulated gate bipolar transistors(FS-IGBT).Unclamped inductive switching(UIS)is the primary method for testing the dynamic avalanche capability of FS-IGBTs.Numerous studies have demonstrated that factors such as device structure,avalanche-generating current filaments,and electrical parameters influence the dynamic avalanche effect of the FS-IGBT.However,few studies have focused on enhancing the avalanche reliability of the FS-IGBT by adjusting circuit parameters during operation.In this paper,the dynamic avalanche effect of the FS-IGBT under UIS conditions is comprehensively investigated through a series of comparative experiments with varying circuit parameters,including bus voltage V_(DC),gate voltage V_(G),gate resistance R_(g),load inductance L,and temperature TC.Furthermore,a method to enhance the dynamic avalanche reliability of the FS-IGBT under UIS by optimizing circuit parameters is proposed.In practical applications,reducing gate voltage,increasing load inductance,and lowering temperature can effectively improve the dynamic avalanche capability of the FS-IGBT.展开更多
Snow avalanches present a significant threat to infrastructure,affecting buildings,roads,railways,and power lines,and frequently leading to massive economic losses in livelihoods and production.With the increase in re...Snow avalanches present a significant threat to infrastructure,affecting buildings,roads,railways,and power lines,and frequently leading to massive economic losses in livelihoods and production.With the increase in regional temperatures and the occurrence of extreme snowfall events,the frequency and intensity of avalanches have escalated,resulting in more severe incidents and higher casualty rates.As natural archives of environmental changes,tree rings offer valuable proxies for avalanche hazard assessments in regions where direct observation data is scarce,particularly in high-altitude regions.The dendrogeomorphology has been gradually being applied in avalanche hazard evaluation,however,it remains limited in China.To address this gap,this study systematically investigates the principles and methodologies for reconstructing avalanche histories and evaluates their applications in avalanche hazard assessments through a literature review and field observations.It provides a comprehensive overview of recent advancements in key areas,including the impact of avalanches on forest ecosystems,the reconstruction of avalanches,and the analysis of avalanche events(i.e.,the spatiotemporal distribution,the historical recurrence intervals,magnitudes,and triggering conditions of avalanches).Considering the current limitations in avalanche hazard assessments and the urgent need for such research in China,we outline key priorities and future directions,including refining reconstruction methodologies,developing a comprehensive tree-ring-based avalanche database for high-altitude regions,and establishing an advanced hazard assessment framework based on dendrochronological evidence.展开更多
The impact of cross-sectional topographic variability on the kinetic properties of granular flows has been underexplored,which hinders the understanding of the kinematics of rock avalanches.In this study,the throat co...The impact of cross-sectional topographic variability on the kinetic properties of granular flows has been underexplored,which hinders the understanding of the kinematics of rock avalanches.In this study,the throat contraction index(T)is introduced to quantify variations in throat topography,and 96 numerical simulation experiments with varying T and slope angles(δ)are conducted.The findings indicate that granular flows experience transient obstructions when traversing throat topographies,primarily due to the periodic formation and breaking of the arch structure.Observations suggest that the acceleration of velocity in the tails of granular flows is restrained by the throat region,potentially altering the dynamics of related geohazards.In this study,the impact of throat topography is quantitatively assessed,demonstrating a reduction in peak flowrates of granular materials by 20%-80% and extending the flowduration up to six times.The present study proposes the throat-induced hazard index(Φ)to evaluate the influenceof throat topography on the risk of rockslides and avalanches characterized by granular flows,which may provide insights for the design of mitigation structures in topographic regions.展开更多
Massive granitic rock avalanches are extensively developed in the middle section of the northern Qinling Mountains(NQM),China.The current consensus is that their formation could have been connected with seismic events...Massive granitic rock avalanches are extensively developed in the middle section of the northern Qinling Mountains(NQM),China.The current consensus is that their formation could have been connected with seismic events that occurred in the NQM.However,there is a lack of systematic discussion on the genetic dynamics of these rock avalanches.Hence,taking Earth system scientific research as a starting point,this paper systematically summarizes and discusses development characteristics,formation times and genetic dynamic mechanisms of granitic rock avalanches in the NQM based on geological investigations,high-precision remote sensing interpretations,geomorphological dating,geophysical exploration,and a large-scale shaking table model test.We identified 53 granitic rock avalanches in this area,with a single collapse area ranging from 0.01×10~6 to 1.71×10~6 m^(2).Their development time can be divided into six stages,namely,107000 years BP,11870–11950 years BP,11000 years BP,2300 years BP,1800 years BP,and 1500 years BP,which were closely related to multiple prehistoric or ancient earthquakes.We suggest that long-term coupling of internal and external earth dynamics was responsible for the granitic rock avalanches in the NQM;the internal dynamics were mainly related to subduction,collision and extrusion of different plates under the Qinling terrane,leading to the formation and tectonic uplift of the Qinling orogenic belt;and the external dynamics were closely associated with climate changes resulting in mountain denudation,freeze-thaw cycles and isostatic balance uplift.In this process,the formation and evolution of the Qinling orogenic belt play a geohazard-pregnant role,structural planes,including faults and joints,play a geohazard-controlled role,and earthquakes play a geohazard-induced role,which jointly results in the occurrence of large-scale granitic rock avalanches in the NQM.This research can not only decipher the genetic dynamic mechanism of large hard granitic rock avalanches but also reveal temporal and spatial patterns of the evolution of breeding and the generation of large-scale rock avalanches in the margins of orogenic belts.展开更多
In this study,avalanches in the Aerxiangou section of the Duku Expressway in the Tianshan Mountain area of Xinjiang were taken as the research object,and 92 avalanches were accurately identified through onsite researc...In this study,avalanches in the Aerxiangou section of the Duku Expressway in the Tianshan Mountain area of Xinjiang were taken as the research object,and 92 avalanches were accurately identified through onsite research.A high-resolution three-dimensional model was established by collecting images from unmanned aerial vehicles for an in-depth understanding of the avalanche danger of the region,according to the sample set selection of different uses of machine learning support vector machines to establish the S1-RBFKSVM,S1-PKSVM,S2-RBFKSVM,and S2-PKSVM avalanche susceptibility coupling models.On the basis of the avalanche point susceptibility,the impact velocity,impact force,avalanche volume,and throw distance constitute the hazard evaluation system.The study results revealed that slopes in the range of 26.6°–46.9°are more prone to avalanches,and sample set 2 improved the accuracy by approximately 30%compared with sample set 1 trained in the avalanche susceptibility model.Principal component analysis revealed a total of 16 high-risk avalanches,which were distributed mainly on the southern side of the route.This study provides data support for avalanche simulations as well as early warning and prevention and provides theoretical and methodological guidance for the construction and operation of the Duku Expressway.展开更多
Snow avalanches are a common natural hazard in many countries with seasonally snow-covered mountains.The avalanche hazard varies with snow avalanche type in different snow climate regions and at different times.The ab...Snow avalanches are a common natural hazard in many countries with seasonally snow-covered mountains.The avalanche hazard varies with snow avalanche type in different snow climate regions and at different times.The ability to understand the characteristics of avalanche activity and hazards of different snow avalanche types is a prerequisite for improving avalanche disaster management in the mid-altitude region of the Central Tianshan Mountains.In this study,we collected data related to avalanche,snowpack,and meteorology during four snow seasons(from 2015 to 2019),and analysed the characteristics and hazards of different types of avalanches.The snow climate of the mid-altitude region of the Central Tianshan Mountains was examined using a snow climate classification scheme,and the results showed that the mountain range has a continental snow climate.To quantify the hazards of different types of avalanches and describe their situation over time in the continental snow climate region,this study used the avalanche hazard degree to assess the hazards of four types of avalanches,i.e.,full-depth dry snow avalanches,full-depth wet snow avalanches,surface-layer dry snow avalanches,and surface-layer wet snow avalanches.The results indicated that surface-layer dry snow avalanches were characterized by large sizes and high release frequencies,which made them having the highest avalanche hazard degree in the Central Tianshan Mountains with a continental snow climate.The overall avalanche hazard showed a single peak pattern over time during the snow season,and the greatest hazard occurred in the second half of February when the snowpack was deep and the temperature increased.This study can help the disaster and emergency management departments rationally arrange avalanche relief resources and develop avalanche prevention strategies.展开更多
The avalanche warning service was established within the operational European territorial cooperation program Slovenia-Austria (SI-AT) 2007-2013 project "Natural Hazards without Frontiers". Four institutes, two fr...The avalanche warning service was established within the operational European territorial cooperation program Slovenia-Austria (SI-AT) 2007-2013 project "Natural Hazards without Frontiers". Four institutes, two from Austria and two from Slovenia, work together to publish an avalanche report during the winter season. The first regular season was the winter 2012/2013. The avalanche and the slab avalanche situation in the transnational area along the 160 km border between the south of Austria and north of Slovenia show major differences of avalanche building weather situations. Because of the nearby sea in the southwest of Slovenia, the prevailing weather situations for high precipitation are coming from southwest or southeast. Nevertheless sometimes a lot of fresh snow occurs at northerly weather situations, which is unusual for Slovenian Alps and is therefore poorly forecasted for this region. Austrian avalanche experts are facing the same problems at southerly weather situations. Hence, an exchange of experience, weather data as well as model information improves the avalanche warning on both sides of the Austrian-Slovenian border.展开更多
A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) sin...A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) single-photon detection are intuitionally demonstrated for the first time. The performance of the detector as a gated-mode single-photon counter at wavelengths of 1310 and 1550nm is investigated. At the operation temperature of 203K,a quantum efficiency of 52% with a dark count probability per gate of 2.4 × 10 ^-3 ,and a gate pulse repetition rate of 50kHz are obtained at 1550nm. The corresponding parameters are 43%, 8.5 × 10^-3 , and 200kHz at 238K.展开更多
Analyzing large prehistoric rock avalanches provides significant data for evaluating the disaster posed by these relatively infrequent but destructive geological events. This paper attempts to study the characteristic...Analyzing large prehistoric rock avalanches provides significant data for evaluating the disaster posed by these relatively infrequent but destructive geological events. This paper attempts to study the characteristics and dynamics of the Ganqiuchi granitic rock avalanche, in the middle of the northern margin of Qinling Mountains, 30 km to the south of Xi’an, Shaanxi Province, China. In plane view, this rock avalanche is characterized by source area, accumulation area and dammed lake area. Based on previous studies, historical records and regional geological data, the major trigger of the Ganqiuchi rock avalanche is considered to be a strong paleo-earthquake with tremendous energy. The in situ deposit block size distributions of the intact rock mass and the debris deposits are presented and analyzed by using a simple model for estimating the number of fragmentation cycles that the blocks underwent. The results show that the primary controlling factor of the fragmentation process is the pre-existing fractures, and there is a relationship between the potential energy and the fragmentation energy: the latter is approximately 20% of the former. Based on the dynamic discrete element technique, the study proposes a four-stage model for the dynamic course of the Ganqiuchi rock avalanche:(1) failing;(2) highspeed sliding;(3) collision with obstacles;(4) decelerated sliding, which has implication for hazard assessment of the potential rock avalanches in China and other countries with similar geological setting.展开更多
A set of detected avalanches from January to April 2012 on a hillside southeast of lschgl, Austria is given. The avalanches are off-the-cut or caused by blast. The meteorological data of two monitoring stations nearby...A set of detected avalanches from January to April 2012 on a hillside southeast of lschgl, Austria is given. The avalanches are off-the-cut or caused by blast. The meteorological data of two monitoring stations nearby the hillside are taken for analysing the weather situation. The meteorological parameters air temperature, wind intensity and wind speed, relative humidity, precipitation and snow depth are investigated for similarities short before and during an avalanche. The avalanches are grouped into three categories and meteorological characteristics are found for each category. Thereby the avalanche hazard for the observed hillside is better assessed and an infrastructure safety by avalanche control due to concerted avalanche blasts is more effective. The result of the analysis shows three kinds of hazard weather conditions, which increase the avalanche hazard: warm air temperatures cause a settlement of the snow pack, but in the beginning of the process a weakening in the snow pack happens. Rapidly decreasing of the air temperature cause cracks in the snow pack and the combination of fresh snow and strong wind speed leads to accumulation of snow on sheltered slopes.展开更多
Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the...Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the characteristics of triggering factors for avalanche activity in this region to improve road safety and the management of natural hazards. Based on the observation of avalanche activity along the national road G218 in the western Tianshan Mountains, avalanche event data in combination with meteorological, snowpack and earthquake data were collected and analyzed. The snow climate of the mountain range was examined using a recently developed snow climate classification scheme, and triggering conditions of snow avalanche in different snow climate regions were compared. The results show that snowfall is the most common triggering factor for a natural avalanche and there is high probability of avalanche release with snowfall exceeding 20.4 mm during a snowfall period. Consecutive rise in temperature within three days and daily mean temperature reaching 0.5℃ in the following day imply a high probability of temperaturerise-triggered avalanche release. Earthquakes have a significant impact on the formation of large size avalanches in the area. For the period 2011-2017, five cases were identified as a consequence of earthquake with magnitudes of 3.3≤M_L≤5.1 and source-to-site distances of 19~139 km. The Tianshan Mountains are characterized by a continental snow climate with lower snow density, lower snow shear strength and high proportion depth hoar, which explains that both the snowfall and temperature for triggering avalanche release in the continental snow climate of the Tianshan Mountains are lower than that in maritime snow climate and transitional snow climate regions. The findings help forecast avalanche release for mitigating avalanche disaster and assessing the risk of avalanche disaster.展开更多
In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has be...In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.展开更多
4H-SiC single photon counting avalanche photodiodes(SPADs)are prior devices for weak ultraviolet(UV)signal detection with the advantages of small size,low leakage current,high avalanche multiplication gain,and high qu...4H-SiC single photon counting avalanche photodiodes(SPADs)are prior devices for weak ultraviolet(UV)signal detection with the advantages of small size,low leakage current,high avalanche multiplication gain,and high quantum efficiency,which benefit from the large bandgap energy,high carrier drift velocity and excellent physical stability of 4 H-SiC semiconductor material.UV detectors are widely used in many key applications,such as missile plume detection,corona discharge,UV astronomy,and biological and chemical agent detection.In this paper,we will describe basic concepts and review recent results on device design,process development,and basic characterizations of 4 H-SiC avalanche photodiodes.Several promising device structures and uniformity of avalanche multiplication are discussed,which are important for achieving high performance of 4 HSiC UV SPADs.展开更多
A massive rock and ice avalanche occurred on the western slope of the Ronti Gad valley in the northern part of Chamoli,Indian Himalaya,on 7 February 7,2021.The avalanche on the high mountain slope at an elevation of 5...A massive rock and ice avalanche occurred on the western slope of the Ronti Gad valley in the northern part of Chamoli,Indian Himalaya,on 7 February 7,2021.The avalanche on the high mountain slope at an elevation of 5600 m above sea level triggered a long runout disaster chain,including rock mass avalanche,debris avalanche,and flood.The disaster chain had a horizontal travel distance of larger than 17,600 m and an elevation difference of 4300 m.In this study,the disaster characteristics and dynamic process were analyzed by multitemporal satellite imagery.The results show that the massive rock and ice avalanche was caused by four large expanding discontinuity planes.The disaster chain was divided into five zones by satellite images and field observation,including source zone,transition zone,dynamic entrainment zone,flow deposition zone,and flood zone.The entrainment effect and melting water were recognized as the main causes of the long-runout distance.Based on the seismic wave records and field videos,the time progress of the disaster was analyzed and the velocity of frontal debris at different stages was calculated.The total analyzed disaster duration was 1247 s,and the frontal debris velocity colliding with the second hydropower station was approximately 23 m/s.This study also carried out the numerical simulation of the disaster by rapid mass movement simulation(RAMMS).The numerical results reproduced the dynamic process of the debris avalanche,and the mechanism of long-runout avalanche was further verified by parametric study.Furthermore,this study discussed the potential causes of disaster and flood and the roles of satellite images and seismic networks in the monitoring and early-warning.展开更多
The effect of high-energy proton irradiation on GaN-based ultraviolet avalanche photodiodes(APDs) is investigated. The dark current of the GaN APD is calculated as a function of the proton energy and proton fluences. ...The effect of high-energy proton irradiation on GaN-based ultraviolet avalanche photodiodes(APDs) is investigated. The dark current of the GaN APD is calculated as a function of the proton energy and proton fluences. By considering the diffusion, generation–recombination, local hopping conductivity, band-to-band tunneling, and trap-assisted tunneling currents, we found that the dark current increases as the proton fluence increases, but decreases with increasing proton energy.展开更多
Silicon photonics technology has drawn significant interest due to its potential for compact and high-performance photonic integrated circuits.The Ge-or III-V material-based avalanche photodiodes integrated on silicon...Silicon photonics technology has drawn significant interest due to its potential for compact and high-performance photonic integrated circuits.The Ge-or III-V material-based avalanche photodiodes integrated on silicon photonics provide ideal high sensitivity optical receivers for telecommunication wavelengths.Herein,the last advances of monolithic and hetero-geneous avalanche photodiodes on silicon are reviewed,including different device structures and semiconductor systems.展开更多
Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve...Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.展开更多
文摘This study represents a pioneering effort to analyze the impact of avalanches descending into Morskie Oko from Marchwiczny Gully,the most active avalanche path around the lake.It focuses on catastrophic avalanches that descended from the analyzed gully,as reported in the literature from the 1900s until now.However,only the data collected in recent years,our field studies,combined with modern LIDAR data and GIS-based modeling,allowed us to perform a detailed analysis.The GIS-based approach effectively uses spatial data to address snow avalanche modeling challenges.Although the study area lies within Tatra National Park,no official services carry out systematic avalanche monitoring or measurements.The impact of hazardous events,such as snow avalanches,on the most famous Polish mountain lake,Morskie Oko,has been poorly described in the literature and has yet to be discovered.Therefore,to analyze the selected avalanche parameters,we mainly used our ground and additional aerial photographs taken by local mountain services and related field measurements.Our analysis resulted in figurative estimates of the extent and volume of avalanche snow and its weight,both on the surface of the ice sheet and the part of the avalanche that did not reach the lake's shore and remained on the slope of Marchwiczny Gully.For example,the values for the mighty avalanche on February 3,2023,are 23,500 m~3 and 4,700 tons on the ice surface and 20,000 m~3 and 4,000 tons on the slope.It was determined that avalanches that descend onto the studied lake's surface result in its shallowing.This process occurs because of sedimentation of slope material carried by avalanches,especially during the final phase of ice cover melting.When openings appear in the solid ice cover in spring,floating ice can migrate,driven by wind pressure,and deposit avalanche material in various parts of the lake bottom.Thus,avalanches contributed to the gradual disappearance of the lake.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2244227,42277126 and 41977215).
文摘Air blasts induced by rock-ice avalanches are common natural phenomena known for their far-field destructive impact.In this study,remote sensing images,eyewitness videos and numerical modelling were comprehensively applied to analyze the initiation and propagation of the 2021 Chamoli avalancheinduced air blast.Our findings indicate that air blasts are observed from the avalanche source area to the Rishiganga valley,but nearly disappear in the Dhauliganga valley.The most intense air blast is concentrated on the left side of Ronti Gad valley,with maximum velocity and pressure estimated at over 70 m/s and 20 kPa,respectively.Such high pressure results in widespread tree breakage in the area.Based on the analysis of the Chamoli event,we further discussed the potential contribution of the avalanche flow regime,avalanche dynamics and geomorphology to the destructive potential of air blasts.Rapidly moved sliding mass can impart the air blast a high initial momentum,and this process will be exaggerated when the avalanche impacts valley walls at bends.However,when the rock-ice avalanche transforms into a debris-enriched flash flood,free water within the flowing mass can displace air,inhibiting the generation of air blasts.Our work offers new insights into the generation and propagation of rock-ice avalanche-induced air blasts,underscoring the importance of including this type of hazard during avalanche risk assessment in high-altitude glacial regions.
基金supported in part by the National Natural Science Foundation of China under Grant 62071073in part by the Fundamental Research Funds for Central Universities under Grant 2023CDJXY-041in part by the Foundation from Guangxi Key Laboratory of Optoelectronic Information Processing under Grant GD20201.
文摘The dynamic avalanche effect is a critical factor influencing the performance and reliability of the field-stop insulated gate bipolar transistors(FS-IGBT).Unclamped inductive switching(UIS)is the primary method for testing the dynamic avalanche capability of FS-IGBTs.Numerous studies have demonstrated that factors such as device structure,avalanche-generating current filaments,and electrical parameters influence the dynamic avalanche effect of the FS-IGBT.However,few studies have focused on enhancing the avalanche reliability of the FS-IGBT by adjusting circuit parameters during operation.In this paper,the dynamic avalanche effect of the FS-IGBT under UIS conditions is comprehensively investigated through a series of comparative experiments with varying circuit parameters,including bus voltage V_(DC),gate voltage V_(G),gate resistance R_(g),load inductance L,and temperature TC.Furthermore,a method to enhance the dynamic avalanche reliability of the FS-IGBT under UIS by optimizing circuit parameters is proposed.In practical applications,reducing gate voltage,increasing load inductance,and lowering temperature can effectively improve the dynamic avalanche capability of the FS-IGBT.
基金supported by National Natural Science Foundation of China(NO.42371085)the Tibet Science and Technology Program(XZ202201ZY0011G)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0906).
文摘Snow avalanches present a significant threat to infrastructure,affecting buildings,roads,railways,and power lines,and frequently leading to massive economic losses in livelihoods and production.With the increase in regional temperatures and the occurrence of extreme snowfall events,the frequency and intensity of avalanches have escalated,resulting in more severe incidents and higher casualty rates.As natural archives of environmental changes,tree rings offer valuable proxies for avalanche hazard assessments in regions where direct observation data is scarce,particularly in high-altitude regions.The dendrogeomorphology has been gradually being applied in avalanche hazard evaluation,however,it remains limited in China.To address this gap,this study systematically investigates the principles and methodologies for reconstructing avalanche histories and evaluates their applications in avalanche hazard assessments through a literature review and field observations.It provides a comprehensive overview of recent advancements in key areas,including the impact of avalanches on forest ecosystems,the reconstruction of avalanches,and the analysis of avalanche events(i.e.,the spatiotemporal distribution,the historical recurrence intervals,magnitudes,and triggering conditions of avalanches).Considering the current limitations in avalanche hazard assessments and the urgent need for such research in China,we outline key priorities and future directions,including refining reconstruction methodologies,developing a comprehensive tree-ring-based avalanche database for high-altitude regions,and establishing an advanced hazard assessment framework based on dendrochronological evidence.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307194 and 42120104002)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2024QNRC001).
文摘The impact of cross-sectional topographic variability on the kinetic properties of granular flows has been underexplored,which hinders the understanding of the kinematics of rock avalanches.In this study,the throat contraction index(T)is introduced to quantify variations in throat topography,and 96 numerical simulation experiments with varying T and slope angles(δ)are conducted.The findings indicate that granular flows experience transient obstructions when traversing throat topographies,primarily due to the periodic formation and breaking of the arch structure.Observations suggest that the acceleration of velocity in the tails of granular flows is restrained by the throat region,potentially altering the dynamics of related geohazards.In this study,the impact of throat topography is quantitatively assessed,demonstrating a reduction in peak flowrates of granular materials by 20%-80% and extending the flowduration up to six times.The present study proposes the throat-induced hazard index(Φ)to evaluate the influenceof throat topography on the risk of rockslides and avalanches characterized by granular flows,which may provide insights for the design of mitigation structures in topographic regions.
基金financially supported by the National Natural Science Foundation of China(Nos.42207197,42293355,41672285,42293350,42341101)the Fundamental Research Funds for the Central Universities(Nos.300102264917,300102262908,590123008)。
文摘Massive granitic rock avalanches are extensively developed in the middle section of the northern Qinling Mountains(NQM),China.The current consensus is that their formation could have been connected with seismic events that occurred in the NQM.However,there is a lack of systematic discussion on the genetic dynamics of these rock avalanches.Hence,taking Earth system scientific research as a starting point,this paper systematically summarizes and discusses development characteristics,formation times and genetic dynamic mechanisms of granitic rock avalanches in the NQM based on geological investigations,high-precision remote sensing interpretations,geomorphological dating,geophysical exploration,and a large-scale shaking table model test.We identified 53 granitic rock avalanches in this area,with a single collapse area ranging from 0.01×10~6 to 1.71×10~6 m^(2).Their development time can be divided into six stages,namely,107000 years BP,11870–11950 years BP,11000 years BP,2300 years BP,1800 years BP,and 1500 years BP,which were closely related to multiple prehistoric or ancient earthquakes.We suggest that long-term coupling of internal and external earth dynamics was responsible for the granitic rock avalanches in the NQM;the internal dynamics were mainly related to subduction,collision and extrusion of different plates under the Qinling terrane,leading to the formation and tectonic uplift of the Qinling orogenic belt;and the external dynamics were closely associated with climate changes resulting in mountain denudation,freeze-thaw cycles and isostatic balance uplift.In this process,the formation and evolution of the Qinling orogenic belt play a geohazard-pregnant role,structural planes,including faults and joints,play a geohazard-controlled role,and earthquakes play a geohazard-induced role,which jointly results in the occurrence of large-scale granitic rock avalanches in the NQM.This research can not only decipher the genetic dynamic mechanism of large hard granitic rock avalanches but also reveal temporal and spatial patterns of the evolution of breeding and the generation of large-scale rock avalanches in the margins of orogenic belts.
基金funded by the Key Science and Technology Project of Transportation Industry(2022-ZD6-090)Xinjiang Transportation Science and Technology Project(2022-ZD-006)+1 种基金Xinjiang Transportation Investment 2021"Unveiling the List of Commander-in-Chief"Science and Technology Project(ZKXFWCG2022060004)the Science and Technology Research and Development Project(KY2022021501)of Xinjiang Transportation Design Institute。
文摘In this study,avalanches in the Aerxiangou section of the Duku Expressway in the Tianshan Mountain area of Xinjiang were taken as the research object,and 92 avalanches were accurately identified through onsite research.A high-resolution three-dimensional model was established by collecting images from unmanned aerial vehicles for an in-depth understanding of the avalanche danger of the region,according to the sample set selection of different uses of machine learning support vector machines to establish the S1-RBFKSVM,S1-PKSVM,S2-RBFKSVM,and S2-PKSVM avalanche susceptibility coupling models.On the basis of the avalanche point susceptibility,the impact velocity,impact force,avalanche volume,and throw distance constitute the hazard evaluation system.The study results revealed that slopes in the range of 26.6°–46.9°are more prone to avalanches,and sample set 2 improved the accuracy by approximately 30%compared with sample set 1 trained in the avalanche susceptibility model.Principal component analysis revealed a total of 16 high-risk avalanches,which were distributed mainly on the southern side of the route.This study provides data support for avalanche simulations as well as early warning and prevention and provides theoretical and methodological guidance for the construction and operation of the Duku Expressway.
基金supported by the Open Project of the Xinjiang Uygur Autonomous Region Key Laboratory(2017D04010).
文摘Snow avalanches are a common natural hazard in many countries with seasonally snow-covered mountains.The avalanche hazard varies with snow avalanche type in different snow climate regions and at different times.The ability to understand the characteristics of avalanche activity and hazards of different snow avalanche types is a prerequisite for improving avalanche disaster management in the mid-altitude region of the Central Tianshan Mountains.In this study,we collected data related to avalanche,snowpack,and meteorology during four snow seasons(from 2015 to 2019),and analysed the characteristics and hazards of different types of avalanches.The snow climate of the mid-altitude region of the Central Tianshan Mountains was examined using a snow climate classification scheme,and the results showed that the mountain range has a continental snow climate.To quantify the hazards of different types of avalanches and describe their situation over time in the continental snow climate region,this study used the avalanche hazard degree to assess the hazards of four types of avalanches,i.e.,full-depth dry snow avalanches,full-depth wet snow avalanches,surface-layer dry snow avalanches,and surface-layer wet snow avalanches.The results indicated that surface-layer dry snow avalanches were characterized by large sizes and high release frequencies,which made them having the highest avalanche hazard degree in the Central Tianshan Mountains with a continental snow climate.The overall avalanche hazard showed a single peak pattern over time during the snow season,and the greatest hazard occurred in the second half of February when the snowpack was deep and the temperature increased.This study can help the disaster and emergency management departments rationally arrange avalanche relief resources and develop avalanche prevention strategies.
文摘The avalanche warning service was established within the operational European territorial cooperation program Slovenia-Austria (SI-AT) 2007-2013 project "Natural Hazards without Frontiers". Four institutes, two from Austria and two from Slovenia, work together to publish an avalanche report during the winter season. The first regular season was the winter 2012/2013. The avalanche and the slab avalanche situation in the transnational area along the 160 km border between the south of Austria and north of Slovenia show major differences of avalanche building weather situations. Because of the nearby sea in the southwest of Slovenia, the prevailing weather situations for high precipitation are coming from southwest or southeast. Nevertheless sometimes a lot of fresh snow occurs at northerly weather situations, which is unusual for Slovenian Alps and is therefore poorly forecasted for this region. Austrian avalanche experts are facing the same problems at southerly weather situations. Hence, an exchange of experience, weather data as well as model information improves the avalanche warning on both sides of the Austrian-Slovenian border.
文摘A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) single-photon detection are intuitionally demonstrated for the first time. The performance of the detector as a gated-mode single-photon counter at wavelengths of 1310 and 1550nm is investigated. At the operation temperature of 203K,a quantum efficiency of 52% with a dark count probability per gate of 2.4 × 10 ^-3 ,and a gate pulse repetition rate of 50kHz are obtained at 1550nm. The corresponding parameters are 43%, 8.5 × 10^-3 , and 200kHz at 238K.
基金financially supported by the National Natural Science Foundation of China(grant numbers 4167020392)the State Key Laboratory Foundation of Geohazard Prevention and Geoenvironment Protection(SKLGP2018K015)the Geological Investigation Project fromChina Geological Survey(DD20160336)
文摘Analyzing large prehistoric rock avalanches provides significant data for evaluating the disaster posed by these relatively infrequent but destructive geological events. This paper attempts to study the characteristics and dynamics of the Ganqiuchi granitic rock avalanche, in the middle of the northern margin of Qinling Mountains, 30 km to the south of Xi’an, Shaanxi Province, China. In plane view, this rock avalanche is characterized by source area, accumulation area and dammed lake area. Based on previous studies, historical records and regional geological data, the major trigger of the Ganqiuchi rock avalanche is considered to be a strong paleo-earthquake with tremendous energy. The in situ deposit block size distributions of the intact rock mass and the debris deposits are presented and analyzed by using a simple model for estimating the number of fragmentation cycles that the blocks underwent. The results show that the primary controlling factor of the fragmentation process is the pre-existing fractures, and there is a relationship between the potential energy and the fragmentation energy: the latter is approximately 20% of the former. Based on the dynamic discrete element technique, the study proposes a four-stage model for the dynamic course of the Ganqiuchi rock avalanche:(1) failing;(2) highspeed sliding;(3) collision with obstacles;(4) decelerated sliding, which has implication for hazard assessment of the potential rock avalanches in China and other countries with similar geological setting.
文摘A set of detected avalanches from January to April 2012 on a hillside southeast of lschgl, Austria is given. The avalanches are off-the-cut or caused by blast. The meteorological data of two monitoring stations nearby the hillside are taken for analysing the weather situation. The meteorological parameters air temperature, wind intensity and wind speed, relative humidity, precipitation and snow depth are investigated for similarities short before and during an avalanche. The avalanches are grouped into three categories and meteorological characteristics are found for each category. Thereby the avalanche hazard for the observed hillside is better assessed and an infrastructure safety by avalanche control due to concerted avalanche blasts is more effective. The result of the analysis shows three kinds of hazard weather conditions, which increase the avalanche hazard: warm air temperatures cause a settlement of the snow pack, but in the beginning of the process a weakening in the snow pack happens. Rapidly decreasing of the air temperature cause cracks in the snow pack and the combination of fresh snow and strong wind speed leads to accumulation of snow on sheltered slopes.
基金supported by the Science and Technology Service Network Initiative of the Chinese Academy of Science (Grant No.KFJSTSZDTP-015)the National Project of Investigation of Basic Resources for Science and Technology (Grant No.2017FY100501)the supports in field and laboratory work from the Tianshan Station for Snow cover and Avalanche Research,Chinese Academy of Sciences
文摘Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the characteristics of triggering factors for avalanche activity in this region to improve road safety and the management of natural hazards. Based on the observation of avalanche activity along the national road G218 in the western Tianshan Mountains, avalanche event data in combination with meteorological, snowpack and earthquake data were collected and analyzed. The snow climate of the mountain range was examined using a recently developed snow climate classification scheme, and triggering conditions of snow avalanche in different snow climate regions were compared. The results show that snowfall is the most common triggering factor for a natural avalanche and there is high probability of avalanche release with snowfall exceeding 20.4 mm during a snowfall period. Consecutive rise in temperature within three days and daily mean temperature reaching 0.5℃ in the following day imply a high probability of temperaturerise-triggered avalanche release. Earthquakes have a significant impact on the formation of large size avalanches in the area. For the period 2011-2017, five cases were identified as a consequence of earthquake with magnitudes of 3.3≤M_L≤5.1 and source-to-site distances of 19~139 km. The Tianshan Mountains are characterized by a continental snow climate with lower snow density, lower snow shear strength and high proportion depth hoar, which explains that both the snowfall and temperature for triggering avalanche release in the continental snow climate of the Tianshan Mountains are lower than that in maritime snow climate and transitional snow climate regions. The findings help forecast avalanche release for mitigating avalanche disaster and assessing the risk of avalanche disaster.
基金support from the 973 Program of China (Grant No. 2008CB425803)the West Light Foundation of the CAS (Grant No. 09R2200200)
文摘In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.
基金supported in part by National Key R&D Program of China under Grant No. 2016YFB0400902in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘4H-SiC single photon counting avalanche photodiodes(SPADs)are prior devices for weak ultraviolet(UV)signal detection with the advantages of small size,low leakage current,high avalanche multiplication gain,and high quantum efficiency,which benefit from the large bandgap energy,high carrier drift velocity and excellent physical stability of 4 H-SiC semiconductor material.UV detectors are widely used in many key applications,such as missile plume detection,corona discharge,UV astronomy,and biological and chemical agent detection.In this paper,we will describe basic concepts and review recent results on device design,process development,and basic characterizations of 4 H-SiC avalanche photodiodes.Several promising device structures and uniformity of avalanche multiplication are discussed,which are important for achieving high performance of 4 HSiC UV SPADs.
文摘A massive rock and ice avalanche occurred on the western slope of the Ronti Gad valley in the northern part of Chamoli,Indian Himalaya,on 7 February 7,2021.The avalanche on the high mountain slope at an elevation of 5600 m above sea level triggered a long runout disaster chain,including rock mass avalanche,debris avalanche,and flood.The disaster chain had a horizontal travel distance of larger than 17,600 m and an elevation difference of 4300 m.In this study,the disaster characteristics and dynamic process were analyzed by multitemporal satellite imagery.The results show that the massive rock and ice avalanche was caused by four large expanding discontinuity planes.The disaster chain was divided into five zones by satellite images and field observation,including source zone,transition zone,dynamic entrainment zone,flow deposition zone,and flood zone.The entrainment effect and melting water were recognized as the main causes of the long-runout distance.Based on the seismic wave records and field videos,the time progress of the disaster was analyzed and the velocity of frontal debris at different stages was calculated.The total analyzed disaster duration was 1247 s,and the frontal debris velocity colliding with the second hydropower station was approximately 23 m/s.This study also carried out the numerical simulation of the disaster by rapid mass movement simulation(RAMMS).The numerical results reproduced the dynamic process of the debris avalanche,and the mechanism of long-runout avalanche was further verified by parametric study.Furthermore,this study discussed the potential causes of disaster and flood and the roles of satellite images and seismic networks in the monitoring and early-warning.
基金supported by the National Natural Science Foundation of China(No.61404132)the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2015-302,lzujbky-2017-171,and lzujbky-2016-119)
文摘The effect of high-energy proton irradiation on GaN-based ultraviolet avalanche photodiodes(APDs) is investigated. The dark current of the GaN APD is calculated as a function of the proton energy and proton fluences. By considering the diffusion, generation–recombination, local hopping conductivity, band-to-band tunneling, and trap-assisted tunneling currents, we found that the dark current increases as the proton fluence increases, but decreases with increasing proton energy.
文摘Silicon photonics technology has drawn significant interest due to its potential for compact and high-performance photonic integrated circuits.The Ge-or III-V material-based avalanche photodiodes integrated on silicon photonics provide ideal high sensitivity optical receivers for telecommunication wavelengths.Herein,the last advances of monolithic and hetero-geneous avalanche photodiodes on silicon are reviewed,including different device structures and semiconductor systems.
基金Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,Shanghai Branch,University of Science and Technology of Chinathe National Natural Science Foundation of China under Grant No 11405172
文摘Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.