Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont...Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.展开更多
Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonli...Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively.展开更多
Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper ...Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper proposes an Adaptive Terminal Sliding Combined Super TwistingControl(ATS-STC)method to address the issues of low precision,slow convergence,and poor dis-turbance rejection capability resulting from external disturbances,such as carrier air-wake and deckmotion.By introducing a nonlinear term into the sliding surface and employing an integralapproach,the proposed ATS-STC method can ensure finite-time convergence and mitigate the chat-tering problem.An adaptive law is also utilized to estimate the external disturbances,therebyenhancing the anti-disturbance performance.Then,the stability and convergence time analysis ofthe designed controller are conducted.Based on the proposed method,an Automatic Carrier Land-ing System(ACLS)is developed to perform the carrier landing control task.Furthermore,a multi-dimensional validation is carried out.For the numerical simulation test,the Terminal Sliding ModeControl(TSMC)method and Proportion Integration Differentiation(PID)method are introducedas comparison,the quantitative assessment results show that the tracking error of TSMC and PIDcan reach 1.5 times and 2 times that of the proposed method.Finally,the Hardware-in-the-Loop(HIL)test and real flight test are conducted.All the experimental results demonstrate that the pro-posed control method is more effective and precise.展开更多
With the development of machine translation technology,automatic pre-editing has attracted increasing research attention for its important role in improving translation quality and efficiency.This study utilizes UAM C...With the development of machine translation technology,automatic pre-editing has attracted increasing research attention for its important role in improving translation quality and efficiency.This study utilizes UAM Corpus Tool 3.0 to annotate and categorize 99 key publications between 1992 and 2024,tracing the research paths and technological evolution of automatic pre-translation editing.The study finds that current approaches can be classified into four categories:controlled language-based approaches,text simplification approaches,interlingua-based approaches,and large language model-driven approaches.By critically examining their technical features and applicability in various contexts,this review aims to provide valuable insights to guide the future optimization and expansion of pre-translation editing systems.展开更多
The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and perf...The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.展开更多
Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy...Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy to improve the opti-mization of PID controllers within nonlinear oscillatory Automatic Generation Control(AGC)systems,essential for the stability of power systems.Our approach aims to reduce the integrated time squared error,the integrated time absolute error,and the rate of change in deviation,facilitating faster convergence,diminished overshoot,and decreased oscillations.By incorporating the spiral model from the Whale Optimization Algorithm(WOA)into the Multi-Objective Marine Predator Algorithm(MOMPA),our method effectively broadens the diversity of solution sets and finely tunes the balance between exploration and exploitation strategies.Furthermore,the QQSMOMPA framework integrates quasi-oppositional learning and Q-learning to overcome local optima,thereby generating optimal Pareto solutions.When applied to nonlinear AGC systems featuring governor dead zones,the PID controllers optimized by QQSMOMPA not only achieve 14%reduction in the frequency settling time but also exhibit robustness against uncertainties in load disturbance inputs.展开更多
In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load a...In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments.展开更多
This paper considers the automatic carrier landing problem of carrier-based aircrafts subjected to constraints,deck motion,measurement noises,and unknown disturbances.The iterative model predictive control(MPC)strateg...This paper considers the automatic carrier landing problem of carrier-based aircrafts subjected to constraints,deck motion,measurement noises,and unknown disturbances.The iterative model predictive control(MPC)strategy with constraints is proposed for automatic landing control of the aircraft.First,the long short-term memory(LSTM)neural network is used to calculate the adaptive reference trajectories of the aircraft.Then the Sage-Husa adaptive Kalman filter and the disturbance observer are introduced to design the composite compensator.Second,an iterative optimization algorithm is presented to fast solve the receding horizon optimal control problem of MPC based on the Lagrange’s theory.Moreover,some sufficient conditions are derived to guarantee the stability of the landing system in a closed loop with the MPC.Finally,the simulation results of F/A-18A aircraft show that compared with the conventional MPC,the presented MPC strategy improves the computational efficiency by nearly 56%and satisfies the control performance requirements of carrier landing.展开更多
L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled pro...L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.展开更多
The article mainly studies the application strategy of automatic addressable single-lamp control technology in tunnel lighting.It encompasses an introduction to this technology,an analysis of the tunnel lighting syste...The article mainly studies the application strategy of automatic addressable single-lamp control technology in tunnel lighting.It encompasses an introduction to this technology,an analysis of the tunnel lighting system using automatic addressable single-lamp control technology,and outlines the main development direction for this technology in modern tunnel lighting.The aim is to offer insights that can inform the rational deployment of this technology,thereby enhancing the lighting control effectiveness in modern tunnels and meeting their specific lighting requirements more effectively.展开更多
文摘Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.
基金supported in part by the Science and Technology Innovation Program of Hunan Province under Grant 2022RC4028in part by the National Natural Science Foundation of China under Grant 62473204+3 种基金in part by the Chunhui Program Collaborative Scientific Research Project under Grant 202202004in part by the Natural Science Foundation of Nanjing University of Posts and Telecommunications under Grants NY221082,NY222144,and NY223075in part by the Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunicationsin part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX24_1215.
文摘Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively.
基金supported by the National Natural Science Foundation of China(No.T2288101)the National Key Research and Development Project,China(No.2020YFC1512500)the Academic Excellence Foundation of Beijing University of Aeronautics and Astronautics(BUAA)。
文摘Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper proposes an Adaptive Terminal Sliding Combined Super TwistingControl(ATS-STC)method to address the issues of low precision,slow convergence,and poor dis-turbance rejection capability resulting from external disturbances,such as carrier air-wake and deckmotion.By introducing a nonlinear term into the sliding surface and employing an integralapproach,the proposed ATS-STC method can ensure finite-time convergence and mitigate the chat-tering problem.An adaptive law is also utilized to estimate the external disturbances,therebyenhancing the anti-disturbance performance.Then,the stability and convergence time analysis ofthe designed controller are conducted.Based on the proposed method,an Automatic Carrier Land-ing System(ACLS)is developed to perform the carrier landing control task.Furthermore,a multi-dimensional validation is carried out.For the numerical simulation test,the Terminal Sliding ModeControl(TSMC)method and Proportion Integration Differentiation(PID)method are introducedas comparison,the quantitative assessment results show that the tracking error of TSMC and PIDcan reach 1.5 times and 2 times that of the proposed method.Finally,the Hardware-in-the-Loop(HIL)test and real flight test are conducted.All the experimental results demonstrate that the pro-posed control method is more effective and precise.
基金supported by Chunhui Collaborative Research Project funded by the Ministry of Education of China[Grant No.202200490]Humanities and Social Sciences Research Project funded by the Ministry of Education of China[Grant No.23YJAZH139].
文摘With the development of machine translation technology,automatic pre-editing has attracted increasing research attention for its important role in improving translation quality and efficiency.This study utilizes UAM Corpus Tool 3.0 to annotate and categorize 99 key publications between 1992 and 2024,tracing the research paths and technological evolution of automatic pre-translation editing.The study finds that current approaches can be classified into four categories:controlled language-based approaches,text simplification approaches,interlingua-based approaches,and large language model-driven approaches.By critically examining their technical features and applicability in various contexts,this review aims to provide valuable insights to guide the future optimization and expansion of pre-translation editing systems.
文摘The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.
基金supported in part by the National Natural Science Foundation of China under Grant 61873130in part by the Chunhui Program Collaborative Scientific Research Project under Grant 202202004+4 种基金in part by the Foundation of the Key Laboratory of Industrial Internet of Things and Networked Control of the Ministry of Education of China under Grant 2021FF01in part by the Natural Science Foundation of Nanjing University of Posts and Telecommunications under Grant NY221082,Grant NY222144,and Grant NY223075in part by the Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunicationsin part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grantin part by the Fundamental Research Funds for the Central Universities under WUT:104972024KFYjc0072.
文摘Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy to improve the opti-mization of PID controllers within nonlinear oscillatory Automatic Generation Control(AGC)systems,essential for the stability of power systems.Our approach aims to reduce the integrated time squared error,the integrated time absolute error,and the rate of change in deviation,facilitating faster convergence,diminished overshoot,and decreased oscillations.By incorporating the spiral model from the Whale Optimization Algorithm(WOA)into the Multi-Objective Marine Predator Algorithm(MOMPA),our method effectively broadens the diversity of solution sets and finely tunes the balance between exploration and exploitation strategies.Furthermore,the QQSMOMPA framework integrates quasi-oppositional learning and Q-learning to overcome local optima,thereby generating optimal Pareto solutions.When applied to nonlinear AGC systems featuring governor dead zones,the PID controllers optimized by QQSMOMPA not only achieve 14%reduction in the frequency settling time but also exhibit robustness against uncertainties in load disturbance inputs.
基金supported by the NationalNatural Science Foundation of China(No.52067013)the Natural Science Foundation of Gansu Province(No.20JR5RA395)as well as the Tianyou Innovation Team of Lanzhou Jiaotong University(TY202010).
文摘In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments.
基金National Defense Science and Technology Innovation Project(No.2022-4b5s-wwht-0041)。
文摘This paper considers the automatic carrier landing problem of carrier-based aircrafts subjected to constraints,deck motion,measurement noises,and unknown disturbances.The iterative model predictive control(MPC)strategy with constraints is proposed for automatic landing control of the aircraft.First,the long short-term memory(LSTM)neural network is used to calculate the adaptive reference trajectories of the aircraft.Then the Sage-Husa adaptive Kalman filter and the disturbance observer are introduced to design the composite compensator.Second,an iterative optimization algorithm is presented to fast solve the receding horizon optimal control problem of MPC based on the Lagrange’s theory.Moreover,some sufficient conditions are derived to guarantee the stability of the landing system in a closed loop with the MPC.Finally,the simulation results of F/A-18A aircraft show that compared with the conventional MPC,the presented MPC strategy improves the computational efficiency by nearly 56%and satisfies the control performance requirements of carrier landing.
文摘L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.
文摘The article mainly studies the application strategy of automatic addressable single-lamp control technology in tunnel lighting.It encompasses an introduction to this technology,an analysis of the tunnel lighting system using automatic addressable single-lamp control technology,and outlines the main development direction for this technology in modern tunnel lighting.The aim is to offer insights that can inform the rational deployment of this technology,thereby enhancing the lighting control effectiveness in modern tunnels and meeting their specific lighting requirements more effectively.