To adapt to the unique demand-supply features of accessory parking lots at passenger transport hubs,a mixed parking demand assignment method based on regression modeling is proposed.First,an optimal model aiming to mi...To adapt to the unique demand-supply features of accessory parking lots at passenger transport hubs,a mixed parking demand assignment method based on regression modeling is proposed.First,an optimal model aiming to minimize total time expenditure is constructed.It incorporates parking search time,walking time,and departure time,focusing on short-term parking features.Then,the information dimensions that the parking lot can obtain are evaluated,and three assignment strategies based on three types of regression models-linear regression(LR),extreme gradient boosting(XGBoost),and multilayer perceptron(MLP)-are proposed.A parking process simulation model is built using the traffic simulation package SUMO to facilitate data collection,model training,and case studies.Finally,the performance of the three strategies is com-pared,revealing that the XGBoost-based strategy performs the best in case parking lots,which reduces time expendi-ture by 29.3%and 37.2%,respectively,compared with the MLP-based strategy and LR-based strategy.This method offers diverse options for practical parking manage-ment.展开更多
INTRODUCTION Reports indicating that culturally and linguistically diverse(CALD)people-often with migrant backgrounds-in Australia and New Zealand are more likely to be placed in compulsory community treatment(CCT)hav...INTRODUCTION Reports indicating that culturally and linguistically diverse(CALD)people-often with migrant backgrounds-in Australia and New Zealand are more likely to be placed in compulsory community treatment(CCT)have rightlyraised concernsthat such action might be discriminatory.展开更多
Cooperative task assignment is one of the key research focuses in the field of unmanned aerial vehicles(UAVs). In this paper, an energy learning hyper-heuristic(EL-HH) algorithm is proposed to address the cooperative ...Cooperative task assignment is one of the key research focuses in the field of unmanned aerial vehicles(UAVs). In this paper, an energy learning hyper-heuristic(EL-HH) algorithm is proposed to address the cooperative task assignment problem of heterogeneous UAVs under complex constraints. First, a mathematical model is designed to define the scenario, complex constraints, and objective function of the problem. Then, the scheme encoding, the EL-HH strategy, multiple optimization operators, and the task sequence and time adjustment strategies are designed in the EL-HH algorithm. The scheme encoding is designed with three layers: task sequence, UAV sequence, and waiting time. The EL-HH strategy applies an energy learning method to adaptively adjust the energies of operators, thereby facilitating the selection and application of operators. Multiple optimization operators can update schemes in different ways, enabling the algorithm to fully explore the solution space. Afterward, the task order and time adjustment strategies are designed to adjust task order and insert waiting time. Through the iterative optimization process, a satisfactory assignment scheme is ultimately produced. Finally, simulation and experiment verify the effectiveness of the proposed algorithm.展开更多
With the unprecedented prevalence of Industrial Internet of Things(IIoT)and 5G technology,various applications supported by industrial communication systems have generated exponentially increased processing tasks,whic...With the unprecedented prevalence of Industrial Internet of Things(IIoT)and 5G technology,various applications supported by industrial communication systems have generated exponentially increased processing tasks,which makes task assignment inefficient due to insufficient workers.In this paper,an Intelligent and Trustworthy task assignment method based on Trust and Social relations(ITTS)is proposed for scenarios with many tasks and few workers.Specifically,ITTS first makes initial assignments based on trust and social influences,thereby transforming the complex large-scale industrial task assignment of the platform into the small-scale task assignment for each worker.Then,an intelligent Q-decision mechanism based on workers'social relation is proposed,which adopts the first-exploration-then-utilization principle to allocate tasks.Only when a worker cannot cope with the assigned tasks,it initiates dynamic worker recruitment,thus effectively solving the worker shortage problem as well as the cold start issue.More importantly,we consider trust and security issues,and evaluate the trust and social circles of workers by accumulating task feedback,to provide the platform a reference for worker recruitment,thereby creating a high-quality worker pool.Finally,extensive simulations demonstrate ITTS outperforms two benchmark methods by increasing task completion rates by 56.49%-61.53%and profit by 42.34%-47.19%.展开更多
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en...Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.展开更多
The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively stu...The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.展开更多
As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA...As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.展开更多
Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonline...Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonlinear dynamics,parameter variations,and unmeasurable external disturbances,particularly load torquefluctuations.This study proposes an enhanced Interconnection and Damp-ing Assignment Passivity-Based Control(IDA-PBC)scheme,formulated within the port-controlled Hamiltonian(PCH)framework,to address these limitations.A nonlinear disturbance observer is embedded to estimate and compensate,in real time,for lumped mis-matched disturbances arising from parameter uncertainties and external loads.Additionally,aflatness-based control strategy is employed to generate the desired current references within the nonlinear drive system,ensuring accurate tracking of time-varying speed commands.This integrated approach preserves the system’s energy-based structure,enabling systematic stability analysis while enhancing robustness.The proposed control architecture also maintains low complexity with a limited number of tunable parameters,facilitating practical implementation.Simulation and experimental results under various operating conditions demonstrate the effectiveness and robustness of the proposed method.Comparative analysis with conventional proportional-integral(PI)control and standard IDA-PBC strategies confirms its capability to handle disturbances and maintain dynamic performance.展开更多
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss...Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.展开更多
条件估值法(ContingentValuation Method,CVM),通过询问人们对于环境质量改善的支付意愿(W illingness To Pay,WTP)或受到损害后的受偿意愿(W illingness To Accept,WTA)来评估环境物品或服务的价值。虽然对CVM的准确性存在争议,但这一...条件估值法(ContingentValuation Method,CVM),通过询问人们对于环境质量改善的支付意愿(W illingness To Pay,WTP)或受到损害后的受偿意愿(W illingness To Accept,WTA)来评估环境物品或服务的价值。虽然对CVM的准确性存在争议,但这一方法正被越来越广泛地应用,人们认识到这一方法能够解决许多无法解决的问题。空气污染一直是澳门的环境问题,空气污染造成的损害是多方面的。本研究分2次进行,2002年12月SARS(Severe Acute Respiratory Syndrome)爆发前,进行了WTP的调查,打电话调查样本1 600个,回收有效问卷720份;2004年3月SARS爆发后,又进行了WTA调查,打电话调查样本1 336个,回收有效问卷543份。本研究旨在采用CVM中之WTP和WTA方法,分析比较SARS爆发前后,居民对澳门空气污染损失的意愿价值的变化情况,探讨WTP和WTA两种研究方法的估值差异,为城市环境管理提供决策依据。本研究的特点:①对调查的误差进行了统计学分析;②CVM的调查采用支付意愿和受偿意愿相结合的对比研究。经济分析结果表明,2002年SARS爆发前,以WTP分析得出澳门空气污染的年经济损失保守估计值为3.77亿MOP(澳门元,1美元=8.033MOP)、占当年GDP的0.69%;2004年SARS爆发后,以WTA法分析得出澳门空气污染的年经济损失最高估计值为14.32亿MOP/年,占当年GDP的2.2%。研究表明,SARS爆发后,居民的环护意识有不同程度的提高。展开更多
基金The National Natural Science Foundation of China(No.52302388)the Natural Science Foundation of Jiangsu Province(No.BK20230853).
文摘To adapt to the unique demand-supply features of accessory parking lots at passenger transport hubs,a mixed parking demand assignment method based on regression modeling is proposed.First,an optimal model aiming to minimize total time expenditure is constructed.It incorporates parking search time,walking time,and departure time,focusing on short-term parking features.Then,the information dimensions that the parking lot can obtain are evaluated,and three assignment strategies based on three types of regression models-linear regression(LR),extreme gradient boosting(XGBoost),and multilayer perceptron(MLP)-are proposed.A parking process simulation model is built using the traffic simulation package SUMO to facilitate data collection,model training,and case studies.Finally,the performance of the three strategies is com-pared,revealing that the XGBoost-based strategy performs the best in case parking lots,which reduces time expendi-ture by 29.3%and 37.2%,respectively,compared with the MLP-based strategy and LR-based strategy.This method offers diverse options for practical parking manage-ment.
文摘INTRODUCTION Reports indicating that culturally and linguistically diverse(CALD)people-often with migrant backgrounds-in Australia and New Zealand are more likely to be placed in compulsory community treatment(CCT)have rightlyraised concernsthat such action might be discriminatory.
基金funded by the National Natural Science Foundation of China (Grant No.62203217)the Jiangsu Province Basic Research Program Natural Science Foundation (Grant No.BK20220885)+3 种基金the Hong Kong,Macao and Taiwan Science and Technology Cooperation Project of Special Foundation in Jiangsu Science and Technology Plan (Grant No.BZ2023057)the Fundamental Research Funds for the Central Universities (Grant No.NJ2024012)the China Postdoctoral Science Foundation (Grant No.GZC20242230)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No.KYCX24_0586)。
文摘Cooperative task assignment is one of the key research focuses in the field of unmanned aerial vehicles(UAVs). In this paper, an energy learning hyper-heuristic(EL-HH) algorithm is proposed to address the cooperative task assignment problem of heterogeneous UAVs under complex constraints. First, a mathematical model is designed to define the scenario, complex constraints, and objective function of the problem. Then, the scheme encoding, the EL-HH strategy, multiple optimization operators, and the task sequence and time adjustment strategies are designed in the EL-HH algorithm. The scheme encoding is designed with three layers: task sequence, UAV sequence, and waiting time. The EL-HH strategy applies an energy learning method to adaptively adjust the energies of operators, thereby facilitating the selection and application of operators. Multiple optimization operators can update schemes in different ways, enabling the algorithm to fully explore the solution space. Afterward, the task order and time adjustment strategies are designed to adjust task order and insert waiting time. Through the iterative optimization process, a satisfactory assignment scheme is ultimately produced. Finally, simulation and experiment verify the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China under Grant No.62072475 and No.62302062in part by the Hunan Provincial Natural Science Foundation of China under Grant Number 2023JJ40081。
文摘With the unprecedented prevalence of Industrial Internet of Things(IIoT)and 5G technology,various applications supported by industrial communication systems have generated exponentially increased processing tasks,which makes task assignment inefficient due to insufficient workers.In this paper,an Intelligent and Trustworthy task assignment method based on Trust and Social relations(ITTS)is proposed for scenarios with many tasks and few workers.Specifically,ITTS first makes initial assignments based on trust and social influences,thereby transforming the complex large-scale industrial task assignment of the platform into the small-scale task assignment for each worker.Then,an intelligent Q-decision mechanism based on workers'social relation is proposed,which adopts the first-exploration-then-utilization principle to allocate tasks.Only when a worker cannot cope with the assigned tasks,it initiates dynamic worker recruitment,thus effectively solving the worker shortage problem as well as the cold start issue.More importantly,we consider trust and security issues,and evaluate the trust and social circles of workers by accumulating task feedback,to provide the platform a reference for worker recruitment,thereby creating a high-quality worker pool.Finally,extensive simulations demonstrate ITTS outperforms two benchmark methods by increasing task completion rates by 56.49%-61.53%and profit by 42.34%-47.19%.
基金supported by the National Natural Science Foundation of China(No.92371206)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX2023063).
文摘Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.
基金the financial support provided by the National Natural Science Foundation of China(NSFC)(Grant No.62173274)the National Key R&D Program of China(Grant No.2019YFA0405300)+4 种基金the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University(Grant No.PF2023046)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)the Postdoctoral Fellowship Program of CPSF(No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.
基金supported by the National Natural Science Foundation of China (No. 62073267)。
文摘As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.
基金supported in part by an International Research Partnership“Electrical Engineering-Thai French Research Center(EE-TFRC)”under the project framework of the Lorraine Universite´d’Excellence(LUE)in cooperation between Universite´de Lorraine(France)and King Mongkut’s University of Technology North Bangkok(year 2021-2024/2025-28)by the National Research Council of Thailand(NRCT)under Research Team Promotion Grant(Senior Research Scholar Program)under Grant No.N42A 680561by the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation under Research project Grant No.B41G680025.
文摘Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonlinear dynamics,parameter variations,and unmeasurable external disturbances,particularly load torquefluctuations.This study proposes an enhanced Interconnection and Damp-ing Assignment Passivity-Based Control(IDA-PBC)scheme,formulated within the port-controlled Hamiltonian(PCH)framework,to address these limitations.A nonlinear disturbance observer is embedded to estimate and compensate,in real time,for lumped mis-matched disturbances arising from parameter uncertainties and external loads.Additionally,aflatness-based control strategy is employed to generate the desired current references within the nonlinear drive system,ensuring accurate tracking of time-varying speed commands.This integrated approach preserves the system’s energy-based structure,enabling systematic stability analysis while enhancing robustness.The proposed control architecture also maintains low complexity with a limited number of tunable parameters,facilitating practical implementation.Simulation and experimental results under various operating conditions demonstrate the effectiveness and robustness of the proposed method.Comparative analysis with conventional proportional-integral(PI)control and standard IDA-PBC strategies confirms its capability to handle disturbances and maintain dynamic performance.
文摘Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.