The application of the saddlepoint approximation to reliability analysis of dynamic systems is investigated. The failure event in reliability problems is formulated as the exceedance of a single performance variable o...The application of the saddlepoint approximation to reliability analysis of dynamic systems is investigated. The failure event in reliability problems is formulated as the exceedance of a single performance variable over a prescribed threshold level. The saddlepoint approximation technique provides a choice to estimate the cumulative distribution function (CDF) of the performance variable. The failure probability is obtained as the value of the complement CDF at a specified threshold. The method requires computing the saddlepoint from a simple algebraic equation that depends on the cumulant generating function (CGF) of the performance variable. A method for calculating the saddlepoint using random samples of the performance variable is presented. The applicable region of the saddlepoint approximation is discussed in detail. A 10-story shear building model with white noise excitation illustrates the accuracy and efficiency of the proposed methodology.展开更多
Actual engineering systems will be inevitably affected by uncertain factors.Thus,the Reliability-Based Multidisciplinary Design Optimization(RBMDO)has become a hotspot for recent research and application in complex en...Actual engineering systems will be inevitably affected by uncertain factors.Thus,the Reliability-Based Multidisciplinary Design Optimization(RBMDO)has become a hotspot for recent research and application in complex engineering system design.The Second-Order/First-Order Mean-Value Saddlepoint Approximate(SOMVSA/-FOMVSA)are two popular reliability analysis strategies that are widely used in RBMDO.However,the SOMVSA method can only be used efficiently when the distribution of input variables is Gaussian distribution,which significantly limits its application.In this study,the Gaussian Mixture Model-based Second-Order Mean-Value Saddlepoint Approximation(GMM-SOMVSA)is introduced to tackle above problem.It is integrated with the Collaborative Optimization(CO)method to solve RBMDO problems.Furthermore,the formula and procedure of RBMDO using GMM-SOMVSA-Based CO(GMM-SOMVSA-CO)are proposed.Finally,an engineering example is given to show the application of the GMM-SOMVSA-CO method.展开更多
The square root relationship of gas release in the early stage of desorption is widely used to provide a simple and fast estimation of the lost gas in coal mines. However, questions arise as to how the relationship wa...The square root relationship of gas release in the early stage of desorption is widely used to provide a simple and fast estimation of the lost gas in coal mines. However, questions arise as to how the relationship was theoretically derived, what are the assumptions and applicable conditions and how large the error will be. In this paper, the analytical solutions of gas concentration and fractional gas loss for the diffusion of gas in a spherical coal sample were given with detailed mathematical derivations based on the diffusion equation. The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken. The results indicate that the square root relationship of gas release is the first term of the approximation, and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a spherical coal sample.展开更多
The shape approximation method has been proven to be rapid and practicable in resolving low-thrust trajectory;however,it still faces the challenges of large deviation from the optimal solution and inability to satisfy...The shape approximation method has been proven to be rapid and practicable in resolving low-thrust trajectory;however,it still faces the challenges of large deviation from the optimal solution and inability to satisfy the specific flight time and fuel mass constraints.In this paper,a modified shape approximation low-thrust model is presented,and a novel constrained optimization algorithm is developed to solve this problem.The proposed method aims at settling the bi-objective optimization orbit involving the twin objectives of minimum flight time and low fuel consumption and enhancing the accuracy of optimized orbit.In particular,a transformed high-order polynomial model based on finite Fourier series is proposed,which can be characterized as a multi-constraint optimization problem.Then,a novel optimization algorithm is specifically developed to optimize the large-scale multi-constraint dynamical equations of shape trajectory.The key performance indicators of the index include minimum flight time,low fuel consumption and bi-objective optimization of the two.Simulation results prove that this approach possesses both the high precision achievable by numerical methods and low computational complexity offered by shape approximation techniques.Besides,the Pareto front of the fuel-time bi-objective optimization orbit is firstly introduced to analyze an intact optimal solution set.Furthermore,we have demonstrated that our proposed approach is appropriate to generate the preliminary orbit for pseudo-spectral method.展开更多
The analytical mathematical solutions of gas concentration and fractional gas loss for the diffusion of gas in a cylindrical coal sample were given with detailed mathematical derivations by assuming that the diffusion...The analytical mathematical solutions of gas concentration and fractional gas loss for the diffusion of gas in a cylindrical coal sample were given with detailed mathematical derivations by assuming that the diffusion of gas through the coal matrix is concentration gradient-driven and obeys the Fick’s Second Law of Diffusion.The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken.The results indicate that the square root relationship of gas release in the early stage of desorption,which is widely used to provide a simple and fast estimation of the lost gas,is the first term of the approximation,and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a cylindrical coal sample.展开更多
The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes ...The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.展开更多
基金Research Committee of University of Macao Under Grant No. G074/05-06S/YKV/FST UMAC.
文摘The application of the saddlepoint approximation to reliability analysis of dynamic systems is investigated. The failure event in reliability problems is formulated as the exceedance of a single performance variable over a prescribed threshold level. The saddlepoint approximation technique provides a choice to estimate the cumulative distribution function (CDF) of the performance variable. The failure probability is obtained as the value of the complement CDF at a specified threshold. The method requires computing the saddlepoint from a simple algebraic equation that depends on the cumulant generating function (CGF) of the performance variable. A method for calculating the saddlepoint using random samples of the performance variable is presented. The applicable region of the saddlepoint approximation is discussed in detail. A 10-story shear building model with white noise excitation illustrates the accuracy and efficiency of the proposed methodology.
基金support from the National Natural Science Foundation of China(Grant No.52175130)the Sichuan Science and Technology Program(Grant No.2021YFS0336)+4 种基金the China Postdoctoral Science Foundation(Grant No.2021M700693)the 2021 Open Project of Failure Mechanics and Engineering Disaster Prevention,Key Lab of Sichuan Province(Grant No.FMEDP202104)the Fundamental Research Funds for the Central Universities(Grant No.ZYGX2019J035)the Sichuan Science and Technology Innovation Seedling Project Funding Project(Grant No.2021112)the Sichuan Special Equipment Inspection and Research Institute(YNJD-02-2020)are gratefully acknowledged.
文摘Actual engineering systems will be inevitably affected by uncertain factors.Thus,the Reliability-Based Multidisciplinary Design Optimization(RBMDO)has become a hotspot for recent research and application in complex engineering system design.The Second-Order/First-Order Mean-Value Saddlepoint Approximate(SOMVSA/-FOMVSA)are two popular reliability analysis strategies that are widely used in RBMDO.However,the SOMVSA method can only be used efficiently when the distribution of input variables is Gaussian distribution,which significantly limits its application.In this study,the Gaussian Mixture Model-based Second-Order Mean-Value Saddlepoint Approximation(GMM-SOMVSA)is introduced to tackle above problem.It is integrated with the Collaborative Optimization(CO)method to solve RBMDO problems.Furthermore,the formula and procedure of RBMDO using GMM-SOMVSA-Based CO(GMM-SOMVSA-CO)are proposed.Finally,an engineering example is given to show the application of the GMM-SOMVSA-CO method.
文摘The square root relationship of gas release in the early stage of desorption is widely used to provide a simple and fast estimation of the lost gas in coal mines. However, questions arise as to how the relationship was theoretically derived, what are the assumptions and applicable conditions and how large the error will be. In this paper, the analytical solutions of gas concentration and fractional gas loss for the diffusion of gas in a spherical coal sample were given with detailed mathematical derivations based on the diffusion equation. The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken. The results indicate that the square root relationship of gas release is the first term of the approximation, and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a spherical coal sample.
基金supported by the National Natural Science Foundation of China(Nos.61627810,61790562,61403096).
文摘The shape approximation method has been proven to be rapid and practicable in resolving low-thrust trajectory;however,it still faces the challenges of large deviation from the optimal solution and inability to satisfy the specific flight time and fuel mass constraints.In this paper,a modified shape approximation low-thrust model is presented,and a novel constrained optimization algorithm is developed to solve this problem.The proposed method aims at settling the bi-objective optimization orbit involving the twin objectives of minimum flight time and low fuel consumption and enhancing the accuracy of optimized orbit.In particular,a transformed high-order polynomial model based on finite Fourier series is proposed,which can be characterized as a multi-constraint optimization problem.Then,a novel optimization algorithm is specifically developed to optimize the large-scale multi-constraint dynamical equations of shape trajectory.The key performance indicators of the index include minimum flight time,low fuel consumption and bi-objective optimization of the two.Simulation results prove that this approach possesses both the high precision achievable by numerical methods and low computational complexity offered by shape approximation techniques.Besides,the Pareto front of the fuel-time bi-objective optimization orbit is firstly introduced to analyze an intact optimal solution set.Furthermore,we have demonstrated that our proposed approach is appropriate to generate the preliminary orbit for pseudo-spectral method.
基金provided by the Science and Technology Grant of Huainan City of China (No.2013A4001)the Key Research Grant of Shanxi Province of China (No.201303027-1)
文摘The analytical mathematical solutions of gas concentration and fractional gas loss for the diffusion of gas in a cylindrical coal sample were given with detailed mathematical derivations by assuming that the diffusion of gas through the coal matrix is concentration gradient-driven and obeys the Fick’s Second Law of Diffusion.The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken.The results indicate that the square root relationship of gas release in the early stage of desorption,which is widely used to provide a simple and fast estimation of the lost gas,is the first term of the approximation,and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a cylindrical coal sample.
基金Work sponsored by"Ministero dell' University"CNR of Italy
文摘The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.