This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreov...This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.展开更多
Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous ...Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.展开更多
In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to...In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.展开更多
Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for ...Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for anyε>0,the number of v∈V with v≤N such that the following inequality|λ_(1)p_(1)~2+λ_(2)p_(2)~2+λ_(3)p_(3)~4+λ_(4)p_(4)~4+λ_5p_5~4-v|<v^(-δ)has no solution in prime variables p_(1),p_(2),p_(3),p_(4),p_(5)does not exceed O(N^(29/32+2δ+ε)).展开更多
This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–M...This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–Maruyama discretization and derive its convergence rate.In particular,the solution of the discretized system converges to the solution of the first-order limit equation in the mean-square sense,and this convergence is independent of the order in which the mass parameterμand the step size h tend to zero.展开更多
With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computin...With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computing and related domains,primarily due to their high power consumption and low energy efficiency.To address this limitation,this paper proposes an accuracy-adaptive approxi-mate reconfigurable array architecture featuring preset dual thresholds and support for four computa-tional accuracy levels,enabling flexible adaptation to diverse application needs.The architecture in-tegrates a self-adaptive mechanism that dynamically adjusts computational precision based on real-time error threshold feedback.To evaluate the proposed architecture,the you only look once version 5(YOLOv5)deep neural network algorithm is parallelized and deployed on the approximate recon-figurable array.Experimental results demonstrate that the architecture achieves an 18.93%reduc-tion in power consumption compared with conventional reconfigurable structures operating in full-pre-cision mode.Additionally,the design exhibits superior energy efficiency and reduced computational resource utilization,thereby significantly enhancing the overall performance and applicability of reconfigurable array processors in power-sensitive scenarios.展开更多
In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which ha...In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which has its own independent values.The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).展开更多
As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be t...As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be transmitted to and processed by untrusted parties.To address this,fully homomorphic encryption(FHE)has emerged as a promising solution for privacy-preserving Machine-Learning-as-a-Service(MLaaS),enabling computation on encrypted data without revealing the plaintext.Nevertheless,FHE remains computationally expensive.As a result,approximate homomorphic encryption(AHE)schemes,such as CKKS,have attracted attention due to their efficiency.In our previous work,we proposed RP-OKC,a CKKS-based clustering scheme implemented via TenSEAL.However,errors inherent to CKKS operations—termed CKKS-errors—can affect the accuracy of the result after decryption.Since these errors can be mitigated through post-decryption rounding,we propose a data pre-scaling technique to increase the number of significant digits and reduce CKKS-errors.Furthermore,we introduce an Operation-Error-Estimation(OEE)table that quantifies upper-bound error estimates for various CKKS operations.This table enables error-aware decryption correction,ensuring alignment between encrypted and plaintext results.We validate our method on K-means clustering using the Kaggle Customer Segmentation dataset.Experimental results confirm that the proposed scheme enhances the accuracy and reliability of privacy-preserving data analysis in cloud environments.展开更多
In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theo...In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theorem,fractional calculus and resolvent operator functions,we prove the approximate controllability of the considered system.展开更多
Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory,offering critical guidance for experimental implementations.In t...Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory,offering critical guidance for experimental implementations.In this paper,we embark on an in-depth exploration of the use of a quantum state prepared by the convex combination of given qubit states to optimally approximate the l_(1)-norm of coherence of the target quantum state,striving to make the prepared state and the target state as similar as possible.Here,we present the analytical solution for the optimal distance for any N given quantum states.We find that the optimal approximation problem for any N>4 quantum states can be transformed into an optimal approximation problem for no more than four quantum states,which not only significantly streamlines the problem but also proves advantageous for laboratories in terms of material conservation.Ultimately,a one-to-one comparison between the analytical and numerical solutions verifies the effectiveness of our approach.展开更多
Stratified flow is a common phenomenon in horizontal tubes of two-phase flow systems. However, the existing methods for calculating the wetted angle of the flat interface model and the central angle of the two-circle ...Stratified flow is a common phenomenon in horizontal tubes of two-phase flow systems. However, the existing methods for calculating the wetted angle of the flat interface model and the central angle of the two-circle model rely on solving implicit transcendental equations, which require iterative numerical root-finding methods,thereby introducing computational complexity and inefficiency. This paper proposes the high-precision explicit approximate solutions for the two models, directly correlating the geometric parameters with the flow parameters, thus significantly enhancing the efficiency and accuracy of two-phase flow analysis.展开更多
Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degra...Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.展开更多
We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of ...We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.展开更多
This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact so...This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.展开更多
In this paper,we study the trigonometric approximation problems of functions which belong to the Lipαclass,the Lip(ξ(t))class,and the W(L_(M)^(*);ξ(t))class in Orlicz spaces by using the tools Hölder inequalit...In this paper,we study the trigonometric approximation problems of functions which belong to the Lipαclass,the Lip(ξ(t))class,and the W(L_(M)^(*);ξ(t))class in Orlicz spaces by using the tools Hölder inequality in Orlicz spaces,the second mean value theorem for integrals,and(E,q)(C,α,β)means etc.At the same time,we give the corresponding degree of approximation.展开更多
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in...A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
A 14-bit successive approximation analog-to-digital converter (SAR ADC) with capacitive calibration has been designed based on the SMIC. 18 μm CMOS process. The overall architecture is in fully differential form to e...A 14-bit successive approximation analog-to-digital converter (SAR ADC) with capacitive calibration has been designed based on the SMIC. 18 μm CMOS process. The overall architecture is in fully differential form to eliminate the effect caused by common mode noise. Meanwhile, the digital-to-analog converter (DAC) is a two-stage structure, which can greatly reduce the area of the capacitor array compared with the traditional DAC structure. The capacitance calibration module is mainly divided into the mismatch voltage acquisition phase and the calibration code backfill phase, which effectively reduces the impact of the DAC mismatch on the accuracy of the SAR ADC. The design of this paper is based on cadence platform simulation verification, simulation results show that when the sampling rate is 1 MS/s, the power supply voltage is 5 V and the reference voltage is 4.096 V, the effective number of bits (ENOB) of the ADC is 13.49 bit, and the signal-to-noise ratio (SNR) is 83.3 dB.展开更多
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s...Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.展开更多
Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly emplo...Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).展开更多
文摘This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.
基金supported by the National Natural Science Foundation of China (NSFC) through Grant Number 42074193
文摘Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.
文摘In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.
基金Supported by NSFC(Nos.12301006,12471009,12071238,11901566,12001047,11971476)Beijing Natural Science Foundation(No.1242003)。
文摘Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for anyε>0,the number of v∈V with v≤N such that the following inequality|λ_(1)p_(1)~2+λ_(2)p_(2)~2+λ_(3)p_(3)~4+λ_(4)p_(4)~4+λ_5p_5~4-v|<v^(-δ)has no solution in prime variables p_(1),p_(2),p_(3),p_(4),p_(5)does not exceed O(N^(29/32+2δ+ε)).
基金supported by the PhD Research Startup Foundation of Hubei University of Economics(Grand No.XJ23BS42).
文摘This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–Maruyama discretization and derive its convergence rate.In particular,the solution of the discretized system converges to the solution of the first-order limit equation in the mean-square sense,and this convergence is independent of the order in which the mass parameterμand the step size h tend to zero.
基金Supported by the National Science and Technology Major Project(No.2022ZD0119001)the National Natural Science Foundation of China(No.61834005,61802304)the Key R&D Program Projects in Shaanxi Province(No.2024GX-YBXM-100).
文摘With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computing and related domains,primarily due to their high power consumption and low energy efficiency.To address this limitation,this paper proposes an accuracy-adaptive approxi-mate reconfigurable array architecture featuring preset dual thresholds and support for four computa-tional accuracy levels,enabling flexible adaptation to diverse application needs.The architecture in-tegrates a self-adaptive mechanism that dynamically adjusts computational precision based on real-time error threshold feedback.To evaluate the proposed architecture,the you only look once version 5(YOLOv5)deep neural network algorithm is parallelized and deployed on the approximate recon-figurable array.Experimental results demonstrate that the architecture achieves an 18.93%reduc-tion in power consumption compared with conventional reconfigurable structures operating in full-pre-cision mode.Additionally,the design exhibits superior energy efficiency and reduced computational resource utilization,thereby significantly enhancing the overall performance and applicability of reconfigurable array processors in power-sensitive scenarios.
文摘In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which has its own independent values.The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).
基金funded by National Science and Technology Council,Taiwan,grant numbers are 110-2401-H-002-094-MY2 and 112-2221-E-130-001.
文摘As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be transmitted to and processed by untrusted parties.To address this,fully homomorphic encryption(FHE)has emerged as a promising solution for privacy-preserving Machine-Learning-as-a-Service(MLaaS),enabling computation on encrypted data without revealing the plaintext.Nevertheless,FHE remains computationally expensive.As a result,approximate homomorphic encryption(AHE)schemes,such as CKKS,have attracted attention due to their efficiency.In our previous work,we proposed RP-OKC,a CKKS-based clustering scheme implemented via TenSEAL.However,errors inherent to CKKS operations—termed CKKS-errors—can affect the accuracy of the result after decryption.Since these errors can be mitigated through post-decryption rounding,we propose a data pre-scaling technique to increase the number of significant digits and reduce CKKS-errors.Furthermore,we introduce an Operation-Error-Estimation(OEE)table that quantifies upper-bound error estimates for various CKKS operations.This table enables error-aware decryption correction,ensuring alignment between encrypted and plaintext results.We validate our method on K-means clustering using the Kaggle Customer Segmentation dataset.Experimental results confirm that the proposed scheme enhances the accuracy and reliability of privacy-preserving data analysis in cloud environments.
基金Supported by Shandong University of Finance and Economics 2023 International Collaborative Projectsthe National Natural Science Foundation of China(Grant No.62073190)。
文摘In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theorem,fractional calculus and resolvent operator functions,we prove the approximate controllability of the considered system.
基金supported by the Fundamental Research Projects of Shanxi Province(Grant No.202203021222225)the National Natural Science Foundation of China(Grant Nos.12175029,12011530014,and 11775040)the Key Research and Development Project of Liaoning Province(Grant No.2020JH2/10500003).
文摘Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory,offering critical guidance for experimental implementations.In this paper,we embark on an in-depth exploration of the use of a quantum state prepared by the convex combination of given qubit states to optimally approximate the l_(1)-norm of coherence of the target quantum state,striving to make the prepared state and the target state as similar as possible.Here,we present the analytical solution for the optimal distance for any N given quantum states.We find that the optimal approximation problem for any N>4 quantum states can be transformed into an optimal approximation problem for no more than four quantum states,which not only significantly streamlines the problem but also proves advantageous for laboratories in terms of material conservation.Ultimately,a one-to-one comparison between the analytical and numerical solutions verifies the effectiveness of our approach.
基金supported by the General Research Fund from the Research Grants Council of the Hong Kong Special Administrative Region of China (No. PolyU 15210624)。
文摘Stratified flow is a common phenomenon in horizontal tubes of two-phase flow systems. However, the existing methods for calculating the wetted angle of the flat interface model and the central angle of the two-circle model rely on solving implicit transcendental equations, which require iterative numerical root-finding methods,thereby introducing computational complexity and inefficiency. This paper proposes the high-precision explicit approximate solutions for the two models, directly correlating the geometric parameters with the flow parameters, thus significantly enhancing the efficiency and accuracy of two-phase flow analysis.
基金supported in part by the National Natural Science Foundation of China(U2034209)the Postdoctoral Science Foundation of Chongqing(cstc2021jcyj-bsh X0047)+1 种基金the Fundamental Research Funds for the Central Universities(2022CDJJMRH-008)the National Natural Science Foundation of China(62203075)
文摘Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.
基金supported by the National Natural Science Foundation of China(Grant Nos.12441502,12122506,12204230,and 12404554)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0300404)+6 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515020070)Shenzhen Science and Technology Program(Grant No.RCYX20200714114522109)China Postdoctoral Science Foundation(CPSF)(2024M762114)Postdoctoral Fellowship Program of CPSF(GZC20231727)supported by the National Natural Science Foundation of China(Grant Nos.92165206 and 11974330)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301603)the Fundamental Research Funds for the Central Universities。
文摘We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.
文摘This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.
基金Supported by the National Natural Science Foundation of China(Grant No.11761055)The Fundamental Research Funds for the Inner Mongolia Normal University(Grant No.2023JBZD007)+1 种基金The First-Class Disciplines Project,Inner Mongolia Autonomous Region(Grant No.YLXKZX-NSD-001)Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2414).
文摘In this paper,we study the trigonometric approximation problems of functions which belong to the Lipαclass,the Lip(ξ(t))class,and the W(L_(M)^(*);ξ(t))class in Orlicz spaces by using the tools Hölder inequality in Orlicz spaces,the second mean value theorem for integrals,and(E,q)(C,α,β)means etc.At the same time,we give the corresponding degree of approximation.
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.52074295)the Special Fund for Basic Scientific Research Business Expenses of Central Universities(Grant No.2022YJSSB06)supported by State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and technology,Beijing,China(Grant No.SKLGDUEK202217).
文摘A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
文摘A 14-bit successive approximation analog-to-digital converter (SAR ADC) with capacitive calibration has been designed based on the SMIC. 18 μm CMOS process. The overall architecture is in fully differential form to eliminate the effect caused by common mode noise. Meanwhile, the digital-to-analog converter (DAC) is a two-stage structure, which can greatly reduce the area of the capacitor array compared with the traditional DAC structure. The capacitance calibration module is mainly divided into the mismatch voltage acquisition phase and the calibration code backfill phase, which effectively reduces the impact of the DAC mismatch on the accuracy of the SAR ADC. The design of this paper is based on cadence platform simulation verification, simulation results show that when the sampling rate is 1 MS/s, the power supply voltage is 5 V and the reference voltage is 4.096 V, the effective number of bits (ENOB) of the ADC is 13.49 bit, and the signal-to-noise ratio (SNR) is 83.3 dB.
基金supported by the Natural Science Foundation of Shanghai Municipality(21ZR1423400)the National Natural Science Funds of China(62173217)NSFC/Royal Society Cooperation and Exchange Project(62111530154,IEC\NSFC\201107).
文摘Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.
基金supported by the National Natural Science Foundation of China (Grant Nos.21933006 and 21773124)the Fundamental Research Funds for the Central Universities Nankai University (Grant Nos.010-63233001,63221346,63213042,and ZB22000103)+1 种基金the support from the China Postdoctoral Science Foundation (Grant No.2021M691674)the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No.KF2020105)。
文摘Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).