期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
Transfer learning with deep sparse auto-encoder for speech emotion recognition
1
作者 Liang Zhenlin Liang Ruiyu +3 位作者 Tang Manting Xie Yue Zhao Li Wang Shijia 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期160-167,共8页
In order to improve the efficiency of speech emotion recognition across corpora,a speech emotion transfer learning method based on the deep sparse auto-encoder is proposed.The algorithm first reconstructs a small amou... In order to improve the efficiency of speech emotion recognition across corpora,a speech emotion transfer learning method based on the deep sparse auto-encoder is proposed.The algorithm first reconstructs a small amount of data in the target domain by training the deep sparse auto-encoder,so that the encoder can learn the low-dimensional structural representation of the target domain data.Then,the source domain data and the target domain data are coded by the trained deep sparse auto-encoder to obtain the reconstruction data of the low-dimensional structural representation close to the target domain.Finally,a part of the reconstructed tagged target domain data is mixed with the reconstructed source domain data to jointly train the classifier.This part of the target domain data is used to guide the source domain data.Experiments on the CASIA,SoutheastLab corpus show that the model recognition rate after a small amount of data transferred reached 89.2%and 72.4%on the DNN.Compared to the training results of the complete original corpus,it only decreased by 2%in the CASIA corpus,and only 3.4%in the SoutheastLab corpus.Experiments show that the algorithm can achieve the effect of labeling all data in the extreme case that the data set has only a small amount of data tagged. 展开更多
关键词 sparse auto-encoder transfer learning speech emotion recognition
在线阅读 下载PDF
Two-level Bregmanized method for image interpolation with graph regularized sparse coding 被引量:1
2
作者 刘且根 张明辉 梁栋 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期384-388,共5页
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne... A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures. 展开更多
关键词 image interpolation Bregman iterative method graph regularized sparse coding alternating direction method
在线阅读 下载PDF
Multi-static InISAR imaging for ships under sparse aperture 被引量:3
3
作者 JI Bingren WANG Yong +1 位作者 ZHAO Bin XU Rongqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期575-584,共10页
This paper concentrates on super-resolution imaging of the ship target under the sparse aperture situation.Firstly,a multi-static configuration is utilized to solve the coherent processing interval(CPI)problem caused ... This paper concentrates on super-resolution imaging of the ship target under the sparse aperture situation.Firstly,a multi-static configuration is utilized to solve the coherent processing interval(CPI)problem caused by the slow-speed motion of ship targets.Then,we realize signal restoration and image reconstruction with the alternating direction method of multipliers(ADMM).Furthermore,we adopt the interferometric technique to produce the three-dimensional(3D)images of ship targets,namely interferometric inverse synthetic aperture radar(InISAR)imaging.Experiments based on the simulated data are utilized to verify the validity of the proposed method. 展开更多
关键词 multi-static sparse aperture signal recovery inter-ferometric inverse synthetic aperture radar(InISAR) ship target alternating direction method of multipliers(ADMM)
在线阅读 下载PDF
Graph Regularized Sparse Coding Method for Highly Undersampled MRI Reconstruction 被引量:1
4
作者 张明辉 尹子瑞 +2 位作者 卢红阳 吴建华 刘且根 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期434-441,共8页
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ... The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values. 展开更多
关键词 magnetic resonance imaging graph regularized sparse coding Bregman iterative method dictionary updating alternating direction method
在线阅读 下载PDF
Local sparse representation for astronomical image denoising
5
作者 杨阿锋 鲁敏 +1 位作者 滕书华 孙即祥 《Journal of Central South University》 SCIE EI CAS 2013年第10期2720-2727,共8页
Motivated by local coordinate coding(LCC) theory in nonlinear manifold learning, a new image representation model called local sparse representation(LSR) for astronomical image denoising was proposed. Borrowing ideas ... Motivated by local coordinate coding(LCC) theory in nonlinear manifold learning, a new image representation model called local sparse representation(LSR) for astronomical image denoising was proposed. Borrowing ideas from surrogate function and applying the iterative shrinkage-thresholding algorithm(ISTA), an iterative shrinkage operator for LSR was derived. Meanwhile, a fast approximated LSR method by first performing a K-nearest-neighbor search and then solving a l1optimization problem was presented under the guarantee of denoising performance. In addition, the LSR model and adaptive dictionary learning were incorporated into a unified optimization framework, which explicitly established the inner connection of them. Such processing allows us to simultaneously update sparse coding vectors and the dictionary by alternating optimization method. The experimental results show that the proposed method is superior to the traditional denoising method and reaches state-of-the-art performance on astronomical image. 展开更多
关键词 astronomical image DENOISING LOCAL sparse representation(LSR) DICTIONARY learning alternating optimization
在线阅读 下载PDF
Nonlocally Centralized Simultaneous Sparse Coding
6
作者 Lei Yang Song Zhanjie 《Transactions of Tianjin University》 EI CAS 2016年第5期403-410,共8页
The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlocal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NCSSC... The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlocal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NCSSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image restoration methods. 展开更多
关键词 sparse representation image RESTORATION low-rank APPROXIMATION alternATIVE direction method
在线阅读 下载PDF
Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction 被引量:1
7
作者 Jiaojiao Xiong Hongyang Lu +1 位作者 Minghui Zhang Qiegen Liu 《自动化学报》 EI CSCD 北大核心 2017年第10期1841-1849,共9页
关键词 梯度图像 稀疏编码 MRI 卷积 应用 分割图像 空间采样 磁共振成像
在线阅读 下载PDF
Image Denoising via Improved Simultaneous Sparse Coding with Laplacian Scale Mixture
8
作者 YE Jimin ZHANG Yue YANG Yating 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第4期338-346,共9页
Image denoising is a well-studied problem closely related to sparse coding. Noticing that the Laplacian distribution has a strong sparseness, we use Laplacian scale mixture to model sparse coefficients. With the obser... Image denoising is a well-studied problem closely related to sparse coding. Noticing that the Laplacian distribution has a strong sparseness, we use Laplacian scale mixture to model sparse coefficients. With the observation that prior information of an image is relevant to the estimation of sparse coefficients, we introduce the prior information into maximum a posteriori(MAP) estimation of sparse coefficients by an appropriate estimate of the probability density function. Extending to structured sparsity, a nonlocal image denoising model: Improved Simultaneous Sparse Coding with Laplacian Scale Mixture(ISSC-LSM) is proposed. The centering preprocessing, which admits biased-mean of sparse coefficients and saves expensive computation, is done firstly. By alternating minimization and learning an orthogonal PCA dictionary, an efficient algorithm with closed-form solutions is proposed. When applied to noise removal, our proposed ISSC-LSM can capture structured image features, and the adoption of image prior information leads to highly competitive denoising performance. Experimental results show that the proposed method often provides higher subjective and objective qualities than other competing approaches. Our method is most suitable for processing images with abundant self-repeating patterns by effectively suppressing undesirable artifacts while maintaining the textures and edges. 展开更多
关键词 image denoising Laplacian scale mixture maximum a posteriori (MAP) estimation simultaneous sparse coding alternating minimization
原文传递
Impact Force Localization and Reconstruction via ADMM-based Sparse Regularization Method
9
作者 Yanan Wang Lin Chen +3 位作者 Junjiang Liu Baijie Qiao Weifeng He Xuefeng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期170-188,共19页
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ... In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration. 展开更多
关键词 Impact force identification Non-convex sparse regularization alternating direction method of multipliers Proximal operators
在线阅读 下载PDF
Two-Level Bregman Method for MRI Reconstruction with Graph Regularized Sparse Coding
10
作者 刘且根 卢红阳 张明辉 《Transactions of Tianjin University》 EI CAS 2016年第1期24-34,共11页
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the... In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures. 展开更多
关键词 magnetic resonance imaging graph regularized sparse coding dictionary learning Bregman iterative method alternating direction method
在线阅读 下载PDF
L1/2 -Regularized Quantile Method for Sparse Phase Retrieval
11
作者 Si Shen Jiayao Xiang +1 位作者 Huijuan Lv Ailing Yan 《Open Journal of Applied Sciences》 CAS 2022年第12期2135-2151,共17页
The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel metho... The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise. 展开更多
关键词 sparse Phase Retrieval Nonconvex Optimization alternating Direction Method of Multipliers Quantile Regression Model ROBUSTNESS
在线阅读 下载PDF
Alternating Direction Method of Multipliers for Sparse Principal Component Analysis 被引量:5
12
作者 Shiqian Ma 《Journal of the Operations Research Society of China》 EI 2013年第2期253-274,共22页
We consider a convex relaxation of sparse principal component analysisproposed by d' Aspremont et al. (SIAM Rev. 49:434 448, 2007). This convex relax-ation is a nonsmooth semidefinite programming problem in which ... We consider a convex relaxation of sparse principal component analysisproposed by d' Aspremont et al. (SIAM Rev. 49:434 448, 2007). This convex relax-ation is a nonsmooth semidefinite programming problem in which the ξ1 norm of thedesired matrix is imposed in either the objective function or the constraint to improvethe sparsity of the resulting matrix. The sparse principal component is obtained by arank- one decomposition of the resulting sparse matrix. We propose an alternating di-rection method based on a variable-splitting technique and an augmented I agrangianframework for solving this nonsmooth semidefinite programming problem. In con-trast to the first-order method proposed in d' Aspremont et al. (SIAM Rev. 49:434448, 2007), which solves approximately the dual problem of the original semidefiniteprogramming problem, our method deals with the primal problem directly and solvesit exactly, which guarantees that the resulting matrix is a sparse matrix. A globalconvergence result is established for the proposed method. Numerical results on bothsynthetic problems and the real applications from classification of text data and senatevoting data are reported to demonstrate the efficacy of our method. 展开更多
关键词 sparse PCA Semidefinite programming alternating direction method Augmented L agrangian method DEFLATION Projection onto the simplex
原文传递
基于改进的鲁棒非凸范数的视频运动目标检测
13
作者 王莉 窦东阳 +1 位作者 李维勇 高丽娜 《云南大学学报(自然科学版)》 北大核心 2025年第6期1059-1067,共9页
针对传统的低秩稀疏分解模型由于替代函数逼近程度不高和抗噪声能力弱等关键挑战引发的视频运动目标检测性能不高的问题,提出了一种基于改进的鲁棒非凸范数的视频运动目标检测模型.该模型首先采用非凸的拉普拉斯指数范数替代传统LRSD方... 针对传统的低秩稀疏分解模型由于替代函数逼近程度不高和抗噪声能力弱等关键挑战引发的视频运动目标检测性能不高的问题,提出了一种基于改进的鲁棒非凸范数的视频运动目标检测模型.该模型首先采用非凸的拉普拉斯指数范数替代传统LRSD方法中的低秩项;然后,采用非凸的Geman分数范数替代传统LRSD方法中的系数项;其次,将噪声项引入到IRNCN模型中以增强其抗噪声的鲁棒性;接着,为有效求解改进的鲁棒非凸范数的视频运动目标检测模型,采用交替方向乘子法对提出的模型进行有效求解;最后,将提出的模型应用于经典的CDnet数据集和I2R数据集的视频运动目标检测实验中.实验结果表明,新模型的平均F1值比其他同类对比模型最大可提高0.2013,对应的平均精准率最大可提高12.24%,对应的每帧运行时间最大可提高0.1297 s,从而验证了所提出模型的有效性和优越性. 展开更多
关键词 运动目标检测 低秩稀疏分解 指数范数 分数范数 交替方向乘子法
在线阅读 下载PDF
基于稀疏Tikhonov正则化优化处理的瑞雷波频散曲线反演方法研究及应用
14
作者 刘展飞 崔岩 +2 位作者 王彦飞 曹静杰 杨思通 《地球物理学进展》 北大核心 2025年第6期2778-2787,共10页
瑞雷波勘探主要利用瑞雷波的频散特征,揭示地下介质的性质和结构变化.近年来主要用于解决地质结构识别、介质特性分析、地震风险评估、矿产资源勘探等问题.瑞雷波频散曲线反演存在收敛速度慢、噪声干扰、陷入局部极小值等问题.本文尝试... 瑞雷波勘探主要利用瑞雷波的频散特征,揭示地下介质的性质和结构变化.近年来主要用于解决地质结构识别、介质特性分析、地震风险评估、矿产资源勘探等问题.瑞雷波频散曲线反演存在收敛速度慢、噪声干扰、陷入局部极小值等问题.本文尝试提出一种针对瑞雷波频散曲线反演的Tikhonov正则化与优化算法:在反演建模过程中引入模型的L1范数施加稀疏正则化约束,增强模型的泛化能力,以减少分层精细化产生的误差,提高反演精度,使反演结果更贴近实际模型.针对稀疏正则化模型,在求解最小化问题上,利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)求解最小值.使用理论地质模型和实际数据进行测试,实验结果表明,本文提出的方法与最小二乘法相比,反演结果精度更高、稳定性更好. 展开更多
关键词 瑞雷波 频散曲线 稀疏正则化 交替方向乘子法
原文传递
拉盖尔多项式结构波束形成器阵列稀疏化设计
15
作者 王才志 陈华伟 《声学学报》 北大核心 2025年第6期1588-1600,共13页
提出了一种拉盖尔多项式结构波束形成器阵列稀疏优化设计方法。该方法通过引入拉盖尔极点,提升了多项式结构波束形成器设计的自由度。针对多项式结构波束形成器阵列稀疏化设计中的高维优化难题,提出了基于交替方向乘子法的高效稀疏优化... 提出了一种拉盖尔多项式结构波束形成器阵列稀疏优化设计方法。该方法通过引入拉盖尔极点,提升了多项式结构波束形成器设计的自由度。针对多项式结构波束形成器阵列稀疏化设计中的高维优化难题,提出了基于交替方向乘子法的高效稀疏优化方法。通过构造辅助变量使得阵列稀疏度量与阵列响应约束之间实现了分离,进而将阵列稀疏化问题转化为组稀疏正则化优化问题,并导出了原始变量和辅助变量的优化更新公式。仿真结果表明,相比现有多项式结构阵列稀疏化方法,所提方法具有更高的阵元稀疏度,且在相同的阵列条件下,其波束形成性能更好。 展开更多
关键词 传声器阵列 波束形成 稀疏阵列 交替方向乘子法
原文传递
基于非凸松弛原子范数的快速无网格稀疏恢复STAP方法
16
作者 崔林峰 吴敏 +1 位作者 郝程鹏 刘佳 《雷达学报(中英文)》 北大核心 2025年第6期1376-1392,共17页
稀疏恢复空时自适应处理(SR-STAP)方法因其对训练样本的极低需求,在非均匀杂波环境下体现出显著优势。然而,由于需要对空时平面进行离散划分,大多数现有SR-STAP方法的性能均受到网格失配效应的约束。为了克服这个问题并提升杂波抑制性能... 稀疏恢复空时自适应处理(SR-STAP)方法因其对训练样本的极低需求,在非均匀杂波环境下体现出显著优势。然而,由于需要对空时平面进行离散划分,大多数现有SR-STAP方法的性能均受到网格失配效应的约束。为了克服这个问题并提升杂波抑制性能,该文提出了一种基于非凸松弛原子范数的无网格SR-STAP方法。首先,该方法基于连续域内的原子构建无网格的杂波谱稀疏恢复模型,克服了传统基于离散字典方法的网格失配效应;其次,采用原子范数的非凸松弛形式并按照重加权策略迭代执行优化过程,有效突破了分辨率的限制;另外,针对半正定规划求解复杂度高的问题,该文提出了一种基于改进交替方向乘子法(ADMM)的快速求解方案。该方案在ADMM框架基础上,利用杂波协方差矩阵的低秩和block-Toeplitz特性,通过近似半正定投影技术进一步降低算法的复杂度,并采用基于超梯度下降的自适应惩罚系数加快算法的收敛速度。仿真和实测数据结果表明,与现有的SR-STAP方法相比,该文提出的方法能够以更高的计算效率获得更好的杂波抑制和目标检测性能。 展开更多
关键词 稀疏恢复 空时自适应处理 原子范数最小化 非凸松弛 交替方向乘子法
在线阅读 下载PDF
基于物理约束并行网络的非线性系统辨识方法研究
17
作者 赵尚宇 程长明 彭志科 《动力学与控制学报》 2025年第5期1-8,共8页
为解决非线性系统在带噪部分状态测量条件下的辨识问题,本文设计了一种新型物理约束并行网络.其核心思想是通过系统的隐式控制方程引导神经网络训练,以有效压缩网络求解空间,同时获得具备物理可解释性的动力学模型.首先,受稀疏回归方法... 为解决非线性系统在带噪部分状态测量条件下的辨识问题,本文设计了一种新型物理约束并行网络.其核心思想是通过系统的隐式控制方程引导神经网络训练,以有效压缩网络求解空间,同时获得具备物理可解释性的动力学模型.首先,受稀疏回归方法启发,设计了具备函数库的稀疏回归网络层,用于捕捉系统的非线性特性;其次,构建了状态约束并行网络架构,通过状态变量之间的导数关系对三个并行子网络的输出进行约束,实现在带噪部分状态测量的基础上重构系统的全状态输出;最后,将稀疏回归网络层与状态约束并行网络相结合,形成物理约束并行网络,实现全状态输出预测与显式动力学方程辨识的双重功能.为提升网络的优化效率,开发了一种轮换优化算法,交替优化稀疏回归网络层和状态约束并行网络.“物理约束”在此特指状态约束损失函数以及基于隐式控制方程构建的残差损失函数.通过上述融合策略,该方法能够在带噪部分状态测量条件下生成具有物理可解释性的非线性动力学模型.其有效性、鲁棒性和适用性通过数值模拟和实验研究得到验证. 展开更多
关键词 非线性动力系统 系统辨识 物理约束神经网络 稀疏回归 轮换优化
在线阅读 下载PDF
基空间非对称拉普拉斯全变分高光谱图像去噪
18
作者 司伟纳 叶军 姜斌 《遥感学报》 北大核心 2025年第10期3034-3046,共13页
真实的高光谱图像HSI(Hyperspectral Image)容易遭受高强度混合噪声的破坏,如何精确地对噪声进行建模在后续处理任务中至关重要。非对称拉普拉斯噪声建模方法具有较好的混合噪声去除效果,该类方法优点是考虑到噪声的重尾性和非对称性,... 真实的高光谱图像HSI(Hyperspectral Image)容易遭受高强度混合噪声的破坏,如何精确地对噪声进行建模在后续处理任务中至关重要。非对称拉普拉斯噪声建模方法具有较好的混合噪声去除效果,该类方法优点是考虑到噪声的重尾性和非对称性,对不同波段的不同噪声进行建模,然而却忽略了HSI梯度基空间的内在分布特征,导致噪声残留。针对此问题,本研究提出基空间非对称拉普拉斯全变分BSALTV(Base Space Asymmetric Laplacian Total Variational)的HSI去噪模型。此外,梯度基空间Ui充分保留了原始梯度图的先验信息,能够更好地反映HSI梯度的稀疏先验分布特征,并且在不同波段上呈现出独特的非对称分布。本研究通过对梯度基Ui和噪声的非对称分布进行探索,精确挖掘了图像的全局低秩信息和不同波段的噪声分布特征,从而在保持图像边缘和纹理的同时减少噪声,避免了图像失真和过度平滑。最后,通过交替方向乘子法ADMM(Alternating Direction Method of Multipliers)算法求解模型,与其他对比方法进行对比,验证本研究提出模型,在合成和真实数据集上的实验结果表明,本研究所提方法优于对比的其他先进的降噪方法。 展开更多
关键词 高光谱图像 去噪 噪声建模 非对称拉普拉斯分布 全变分 梯度基空间 交替方向乘子法 稀疏先验
原文传递
基于低秩模型和残差模型的图像降噪
19
作者 杨雅兰 胡红萍 杨正民 《测试技术学报》 2025年第5期548-557,共10页
现有基于组稀疏表示的图像恢复方法大多利用非局部自相似先验特性,相似的小块聚类成组,对每组系数施加稀疏度,从而有效保留图像纹理信息。然而,这些方法只对组中每个单独的块施加了简单稀疏性,而忽略了其他有益的图像属性。基于此,提出... 现有基于组稀疏表示的图像恢复方法大多利用非局部自相似先验特性,相似的小块聚类成组,对每组系数施加稀疏度,从而有效保留图像纹理信息。然而,这些方法只对组中每个单独的块施加了简单稀疏性,而忽略了其他有益的图像属性。基于此,提出了一种基于低秩模型和残差模型的图像去噪算法,不仅利用了每组相似块的稀疏性和低秩性,还利用残差学习方法来自动估计图像块的真实稀疏表示。实验结果表明所提算法充分考虑了块之间的关系,将块的相关性和特异性结合,有效实现了图像去噪,从而得到高质量的恢复图像。同时,实验还表明所提算法的峰值信噪比平均增益比块匹配三维协同滤波(Block-Matching and 3D Filtering,BM3D)算法提高0.34 dB,比非局部集中稀疏表示(Non-Local Centralized Sparse Representation,NCSR)提高0.48 dB,比低秩正则联合稀疏(Low-Rank Regularized Joint Sparsity,LRJS)提高0.2 dB,比低秩引导的组稀疏表示(Low-Rankness Guided Group Sparse Representation,LGSR)和GSR_SRLR提高0.04 dB,且平均结构相似性值达到次高,足以证明其优于许多流行或先进的去噪算法。 展开更多
关键词 图像去噪 稀疏表示 非局部自相似 交替最小化
在线阅读 下载PDF
交易频率限制下基于CVaR的多周期稀疏投资组合优化
20
作者 吴中明 解国玉 +1 位作者 屈绍建 王修来 《运筹与管理》 北大核心 2025年第5期164-169,I0053-I0059,共13页
投资组合选择是金融领域的研究热点,本文提出交易频率限制下的多周期稀疏投资组合优化模型。该模型选用条件在险价值(CVaR)度量尾部风险,将经典的l_(1)范数应用于单周期资产头寸向量及相邻周期投资向量的差值,利用Fused LASSO方法得到... 投资组合选择是金融领域的研究热点,本文提出交易频率限制下的多周期稀疏投资组合优化模型。该模型选用条件在险价值(CVaR)度量尾部风险,将经典的l_(1)范数应用于单周期资产头寸向量及相邻周期投资向量的差值,利用Fused LASSO方法得到稀疏投资组合。针对不等式约束下的非光滑优化模型,运用多块交替方向乘子法进行求解。最后通过样本内和样本外实证分析,发现模型可在预定最小期末收益条件下,降低风险并实现稀疏解目标,验证模型及算法的有效性。 展开更多
关键词 多周期 稀疏投资组合 CVAR 交易频率 多块交替方向乘子法
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部