Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion...Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.展开更多
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting...Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.展开更多
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl...This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.展开更多
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from...Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard.This paper proposes a new algorithm called quantum-inspired ant algorithm(QAA)to solve the knapsack problem.Q...The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard.This paper proposes a new algorithm called quantum-inspired ant algorithm(QAA)to solve the knapsack problem.QAA takes the advantage of the principles in quantum computing,such as qubit,quantum gate,and quantum superposition of states,to get more probabilistic-based status with small colonies.By updating the pheromone in the ant algorithm and rotating the quantum gate,the algorithm can finally reach the optimal solution.The detailed steps to use QAA are presented,and by solving series of test cases of classical knapsack problems,the effectiveness and generality of the new algorithm are validated.展开更多
A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving multidimensional knapsack problems. This RWCEA uses a new decoding method and incorporates a heuristic method in initialization. Computatio...A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving multidimensional knapsack problems. This RWCEA uses a new decoding method and incorporates a heuristic method in initialization. Computational results show that the RWCEA performs better than a weight-coded evolutionary algorithm pro-posed by Raidl (1999) and to some existing benchmarks, it can yield better results than the ones reported in the OR-library.展开更多
In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to ...In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to converge to the true Pareto front. Hence, the classical multi-objective genetic algorithms (MOGAs) (i.e., non- Parallel MOGAs) may fail to solve such intractable problem in a reasonable amount of time. The proposed hybrid model will combine the best attribute of island and Jakobovic master slave models. We conduct an extensive experimental study in a multi-core system by varying the different size of processors and the result is compared with basic parallel model i.e., master-slave model which is used to parallelize NSGA-II. The experimental results confirm that the hybrid model is showing a clear edge over master-slave model in terms of processing time and approximation to the true Pareto front.展开更多
The multiple knapsack problem denoted by MKP (B,S,m,n) can be defined as fol- lows.A set B of n items and a set Sof m knapsacks are given such thateach item j has a profit pjand weightwj,and each knapsack i has a ca...The multiple knapsack problem denoted by MKP (B,S,m,n) can be defined as fol- lows.A set B of n items and a set Sof m knapsacks are given such thateach item j has a profit pjand weightwj,and each knapsack i has a capacity Ci.The goal is to find a subset of items of maximum profit such that they have a feasible packing in the knapsacks.MKP(B,S,m,n) is strongly NP- Complete and no polynomial- time approximation algorithm can have an approxima- tion ratio better than0 .5 .In the last ten years,semi- definite programming has been empolyed to solve some combinatorial problems successfully.This paper firstly presents a semi- definite re- laxation algorithm (MKPS) for MKP (B,S,m,n) .It is proved that MKPS have a approxima- tion ratio better than 0 .5 for a subclass of MKP (B,S,m,n) with n≤ 1 0 0 ,m≤ 5 and maxnj=1{ wj} minmi=1{ Ci} ≤ 2 3 .展开更多
A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2 n/4 ) 1-ε ...A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2 n/4 ) 1-ε processors, 0≤ ε ≤1, and O(2 n/2 ) memory to find a solution for the n -element knapsack problem in time O(2 n/4 (2 n/4 ) ε) . The cost of the proposed parallel algorithm is O(2 n/2 ) , which is an optimal method for solving the knapsack problem without memory conflicts and an improved result over the past researches.展开更多
Based on the two-list algorithm and the parallel three-list algorithm, an improved parallel three-list algorithm for knapsack problem is proposed, in which the method of divide and conquer, and parallel merging withou...Based on the two-list algorithm and the parallel three-list algorithm, an improved parallel three-list algorithm for knapsack problem is proposed, in which the method of divide and conquer, and parallel merging without memory conflicts are adopted. To find a solution for the n-element knapsack problem, the proposed algorithm needs O(2^3n/8) time when O(2^3n/8) shared memory units and O(2^n/4) processors are available. The comparisons between the proposed algorithm and 10 existing algorithms show that the improved parallel three-fist algorithm is the first exclusive-read exclusive-write (EREW) parallel algorithm that can solve the knapsack instances in less than O(2^n/2) time when the available hardware resource is smaller than O(2^n/2) , and hence is an improved result over the past researches.展开更多
In order to optimize the knapsack problem further, this paper proposes an innovative model based on dynamic expectation efficiency, and establishes a new optimization algorithm of 0-1 knapsack problem after analysis a...In order to optimize the knapsack problem further, this paper proposes an innovative model based on dynamic expectation efficiency, and establishes a new optimization algorithm of 0-1 knapsack problem after analysis and research. Through analyzing the study of 30 groups of 0-1 knapsack problem from discrete coefficient of the data, we can find that dynamic expectation model can solve the following two types of knapsack problem. Compared to artificial glowworm swam algorithm, the convergence speed of this algorithm is ten times as fast as that of artificial glowworm swam algorithm, and the storage space of this algorithm is one quarter that of artificial glowworm swam algorithm. To sum up, it can be widely used in practical problems.展开更多
文摘Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.
基金National Key Research and Development Program of China,No.2023YFC3006704National Natural Science Foundation of China,No.42171047CAS-CSIRO Partnership Joint Project of 2024,No.177GJHZ2023097MI。
文摘Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.
基金supported by the Research Project of China Southern Power Grid(No.056200KK52222031).
文摘This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.
基金supported by the Major Science and Technology Programs in Henan Province(No.241100210100)Henan Provincial Science and Technology Research Project(No.252102211085,No.252102211105)+3 种基金Endogenous Security Cloud Network Convergence R&D Center(No.602431011PQ1)The Special Project for Research and Development in Key Areas of Guangdong Province(No.2021ZDZX1098)The Stabilization Support Program of Science,Technology and Innovation Commission of Shenzhen Municipality(No.20231128083944001)The Key scientific research projects of Henan higher education institutions(No.24A520042).
文摘Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
基金supported by the National Natural Science Foundation of China(70871081)the Shanghai Leading Academic Discipline Project(S30504).
文摘The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard.This paper proposes a new algorithm called quantum-inspired ant algorithm(QAA)to solve the knapsack problem.QAA takes the advantage of the principles in quantum computing,such as qubit,quantum gate,and quantum superposition of states,to get more probabilistic-based status with small colonies.By updating the pheromone in the ant algorithm and rotating the quantum gate,the algorithm can finally reach the optimal solution.The detailed steps to use QAA are presented,and by solving series of test cases of classical knapsack problems,the effectiveness and generality of the new algorithm are validated.
文摘A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving multidimensional knapsack problems. This RWCEA uses a new decoding method and incorporates a heuristic method in initialization. Computational results show that the RWCEA performs better than a weight-coded evolutionary algorithm pro-posed by Raidl (1999) and to some existing benchmarks, it can yield better results than the ones reported in the OR-library.
文摘In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to converge to the true Pareto front. Hence, the classical multi-objective genetic algorithms (MOGAs) (i.e., non- Parallel MOGAs) may fail to solve such intractable problem in a reasonable amount of time. The proposed hybrid model will combine the best attribute of island and Jakobovic master slave models. We conduct an extensive experimental study in a multi-core system by varying the different size of processors and the result is compared with basic parallel model i.e., master-slave model which is used to parallelize NSGA-II. The experimental results confirm that the hybrid model is showing a clear edge over master-slave model in terms of processing time and approximation to the true Pareto front.
基金Supported by the National Natural Science Foundation of China(1 9971 0 78)
文摘The multiple knapsack problem denoted by MKP (B,S,m,n) can be defined as fol- lows.A set B of n items and a set Sof m knapsacks are given such thateach item j has a profit pjand weightwj,and each knapsack i has a capacity Ci.The goal is to find a subset of items of maximum profit such that they have a feasible packing in the knapsacks.MKP(B,S,m,n) is strongly NP- Complete and no polynomial- time approximation algorithm can have an approxima- tion ratio better than0 .5 .In the last ten years,semi- definite programming has been empolyed to solve some combinatorial problems successfully.This paper firstly presents a semi- definite re- laxation algorithm (MKPS) for MKP (B,S,m,n) .It is proved that MKPS have a approxima- tion ratio better than 0 .5 for a subclass of MKP (B,S,m,n) with n≤ 1 0 0 ,m≤ 5 and maxnj=1{ wj} minmi=1{ Ci} ≤ 2 3 .
文摘A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2 n/4 ) 1-ε processors, 0≤ ε ≤1, and O(2 n/2 ) memory to find a solution for the n -element knapsack problem in time O(2 n/4 (2 n/4 ) ε) . The cost of the proposed parallel algorithm is O(2 n/2 ) , which is an optimal method for solving the knapsack problem without memory conflicts and an improved result over the past researches.
文摘Based on the two-list algorithm and the parallel three-list algorithm, an improved parallel three-list algorithm for knapsack problem is proposed, in which the method of divide and conquer, and parallel merging without memory conflicts are adopted. To find a solution for the n-element knapsack problem, the proposed algorithm needs O(2^3n/8) time when O(2^3n/8) shared memory units and O(2^n/4) processors are available. The comparisons between the proposed algorithm and 10 existing algorithms show that the improved parallel three-fist algorithm is the first exclusive-read exclusive-write (EREW) parallel algorithm that can solve the knapsack instances in less than O(2^n/2) time when the available hardware resource is smaller than O(2^n/2) , and hence is an improved result over the past researches.
文摘In order to optimize the knapsack problem further, this paper proposes an innovative model based on dynamic expectation efficiency, and establishes a new optimization algorithm of 0-1 knapsack problem after analysis and research. Through analyzing the study of 30 groups of 0-1 knapsack problem from discrete coefficient of the data, we can find that dynamic expectation model can solve the following two types of knapsack problem. Compared to artificial glowworm swam algorithm, the convergence speed of this algorithm is ten times as fast as that of artificial glowworm swam algorithm, and the storage space of this algorithm is one quarter that of artificial glowworm swam algorithm. To sum up, it can be widely used in practical problems.