期刊文献+
共找到281,559篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient Resource Management in IoT Network through ACOGA Algorithm
1
作者 Pravinkumar Bhujangrao Landge Yashpal Singh +1 位作者 Hitesh Mohapatra Seyyed Ahmad Edalatpanah 《Computer Modeling in Engineering & Sciences》 2025年第5期1661-1688,共28页
Internet of things networks often suffer from early node failures and short lifespan due to energy limits.Traditional routing methods are not enough.This work proposes a new hybrid algorithm called ACOGA.It combines A... Internet of things networks often suffer from early node failures and short lifespan due to energy limits.Traditional routing methods are not enough.This work proposes a new hybrid algorithm called ACOGA.It combines Ant Colony Optimization(ACO)and the Greedy Algorithm(GA).ACO finds smart paths while Greedy makes quick decisions.This improves energy use and performance.ACOGA outperforms Hybrid Energy-Efficient(HEE)and Adaptive Lossless Data Compression(ALDC)algorithms.After 500 rounds,only 5%of ACOGA’s nodes are dead,compared to 15%for HEE and 20%for ALDC.The network using ACOGA runs for 1200 rounds before the first nodes fail.HEE lasts 900 rounds and ALDC only 850.ACOGA saves at least 15%more energy by better distributing the load.It also achieves a 98%packet delivery rate.The method works well in mixed IoT networks like Smart Water Management Systems(SWMS).These systems have different power levels and communication ranges.The simulation of proposed model has been done in MATLAB simulator.The results show that that the proposed model outperform then the existing models. 展开更多
关键词 Energy management IoT networks ant colony optimization(aco) greedy algorithm hybrid optimization routing algorithms energy efficiency network lifetime
在线阅读 下载PDF
Hybrid Models of Multi-CNN Features with ACO Algorithm for MRI Analysis for Early Detection of Multiple Sclerosis
2
作者 Mohammed Alshahrani Mohammed Al-Jabbar +3 位作者 Ebrahim Mohammed Senan Fatima Ali Amer jid Almahri Sultan Ahmed Almalki Eman A.Alshari 《Computer Modeling in Engineering & Sciences》 2025年第6期3639-3675,共37页
Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making ... Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making AI-based classification crucial for early detection.Therefore,automated classification using Artificial Intelligence(AI)techniques has a crucial role in addressing the limitations of manual classification and preventing the development of MS to advanced stages.This study developed hybrid systems integrating XGBoost(eXtreme Gradient Boosting)with multi-CNN(Convolutional Neural Networks)features based on Ant Colony Optimization(ACO)and Maximum Entropy Score-based Selection(MESbS)algorithms for early classification of MRI(Magnetic Resonance Imaging)images in a multi-class and binary-class MS dataset.All hybrid systems started by enhancing MRI images using the fusion processes of a Gaussian filter and Contrast-Limited Adaptive Histogram Equalization(CLAHE).Then,the Gradient Vector Flow(GVF)algorithm was applied to select white matter(regions of interest)within the brain and segment them from the surrounding brain structures.These regions of interest were processed by CNN models(ResNet101,DenseNet201,and MobileNet)to extract deep feature maps,which were then combined into fused feature vectors of multi-CNN model combinations(ResNet101-DenseNet201,DenseNet201-MobileNet,ResNet101-MobileNet,and ResNet101-DenseNet201-MobileNet).The multi-CNN features underwent dimensionality reduction using ACO and MESbS algorithms to remove unimportant features and retain important features.The XGBoost classifier employed the resultant feature vectors for classification.All developed hybrid systems displayed promising outcomes.For multiclass classification,the XGBoost model using ResNet101-DenseNet201-MobileNet features selected by ACO attained 99.4%accuracy,99.45%precision,and 99.75%specificity,surpassing prior studies(93.76%accuracy).It reached 99.6%accuracy,99.65%precision,and 99.55%specificity in binary-class classification.These results demonstrate the effectiveness of multi-CNN fusion with feature selection in improving MS classification accuracy. 展开更多
关键词 ResNet101 DenseNet201 MobileNet XGBoost multi-CNN features MESbS aco GVF multiple sclerosis
暂未订购
Research on Optimization of Microperforated Acoustic Structures Based on Genetic Algorithm
3
作者 Yang Yu Ruilin Mu 《Journal of Electronic Research and Application》 2025年第2期110-116,共7页
Microperforated panels(MPP)are widely used in noise control applications due to their excellent sound absorption performance.However,traditional single-layer MPPs suffer from a narrow sound absorption bandwidth,making... Microperforated panels(MPP)are widely used in noise control applications due to their excellent sound absorption performance.However,traditional single-layer MPPs suffer from a narrow sound absorption bandwidth,making it difficult to meet the demands for broadband sound absorption.To address this limitation,this study proposes a design approach for double-layer MPPs optimized using a genetic algorithm(GA).By optimizing structural parameters such as perforation diameter,panel thickness,perforation ratio,and cavity depth,the sound absorption performance of the double-layer MPP is significantly enhanced.The results demonstrate that the optimized double-layer MPP achieves an average sound absorption coefficient of 0.71 across the 100-5000 Hz frequency range,with a peak absorption coefficient exceeding 0.8 at 500 Hz,outperforming conventional sound-absorbing products of the same category. 展开更多
关键词 Microperforated panels Genetic algorithm SOUND-ABSORPTION
在线阅读 下载PDF
Localization of Acoustic Emission Source in Rock Using SMIGWO Algorithm
4
作者 Jiong Wei Fuqiang Gao +2 位作者 Jinfu Lou Lei Yang Xiaoqing Wang 《International Journal of Coal Science & Technology》 2025年第2期42-51,共10页
The Grey Wolf Optimization(GWO)algorithm is acknowledged as an effective method for rock acoustic emission localization.However,the conventional GWO algorithm encounters challenges related to solution accuracy and con... The Grey Wolf Optimization(GWO)algorithm is acknowledged as an effective method for rock acoustic emission localization.However,the conventional GWO algorithm encounters challenges related to solution accuracy and convergence speed.To address these concerns,this paper develops a Simplex Improved Grey Wolf Optimizer(SMIGWO)algorithm.The randomly generating initial populations are replaced with the iterative chaotic sequences.The search process is optimized using the convergence factor optimization algorithm based on the inverse incompleteГfunction.The simplex method is utilized to address issues related to poorly positioned grey wolves.Experimental results demonstrate that,compared to the conventional GWO algorithm-based AE localization algorithm,the proposed algorithm achieves a higher solution accuracy and showcases a shorter search time.Additionally,the algorithm demonstrates fewer convergence steps,indicating superior convergence efficiency.These findings highlight that the proposed SMIGWO algorithm offers enhanced solution accuracy,stability,and optimization performance.The benefits of the SMIGWO algorithm extend universally across various materials,such as aluminum,granite,and sandstone,showcasing consistent effectiveness irrespective of material type.Consequently,this algorithm emerges as a highly effective tool for identifying acoustic emission signals and improving the precision of rock acoustic emission localization. 展开更多
关键词 acoustic emission Source localization Iterative chaotic mapping Simplex method Grey wolf optimizer algorithm
在线阅读 下载PDF
Enhancing subsurface seismic profiling with distributed acoustic sensing and optimization algorithms
5
作者 Jing Wang Hong-Hu Zhu +4 位作者 Gang Cheng Tao Wang Xu-Long Gong Dao-Yuan Tan Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3632-3643,共12页
The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed ac... The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed acoustic sensing (DAS) technology enables estimation of the shear-wave distribution as ahigh-density seismic observation system. This technology is characterized by low maintenance costs,high-resolution outputs, and real-time data transmission capabilities, albeit with the challenge ofmanaging massive data generation. Rapid and efficient interpretation of data is the key to advancingapplication of the DAS technology. In this study, field tests were carried out to record ambient noise overa short period using DAS technology, from which the surface-wave dispersion curves were extracted. Inorder to reduce the influence of directional effects on the results, an unsupervised clustering method isused to select appropriate clusters to extract the Green's function. A combination of a genetic algorithmand Monte Carlo (GA-MC) simulation is proposed to invert the subsurface velocity structure. Thestratigraphic profiles obtained by the GA-MC method are in agreement with the borehole profiles.Compared to other methods, the proposed optimization method not only improves the solution qualitybut also reduces the solution time. 展开更多
关键词 Shallow subsurface velocity Site classification Ambient noise imaging Distributed acoustic sensing(DAS) Genetic algorithms and Monte Carlo simulation
在线阅读 下载PDF
基于改进ACO-GA算法的矿用无人运输车路径规划
6
作者 孙霞 孙强 李文清 《煤矿机械》 2025年第11期223-225,共3页
矿用无人运输车在现代矿山智能运输系统中应用广泛,但由于矿山环境的复杂性,其路径规划问题面临诸多挑战。为了提高矿用无人运输车在复杂地形中的路径规划效率与精度,提出一种蚁群优化(ACO)与遗传算法(GA)相结合的混合优化算法,并引入Pe... 矿用无人运输车在现代矿山智能运输系统中应用广泛,但由于矿山环境的复杂性,其路径规划问题面临诸多挑战。为了提高矿用无人运输车在复杂地形中的路径规划效率与精度,提出一种蚁群优化(ACO)与遗传算法(GA)相结合的混合优化算法,并引入Petri网进行多任务调度和资源管理,为矿用无人运输车路径规划提供更高效的调度方案。为了验证算法的有效性,对改进ACO-GA算法与传统算法构建栅格地图进行仿真对比。实验结果表明,改进ACO-GA算法在路径最优性等方面均优于传统算法。 展开更多
关键词 矿用无人运输车 aco GA PETRI网 路径规划
原文传递
基于ARIMA与GGACO算法的ETL任务调度机制研究
7
作者 周金治 刘艺涵 吴斌 《控制工程》 北大核心 2025年第2期208-215,共8页
随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任... 随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任务调度机制的弹性调度能力以及执行效率,提出了一种基于整合移动平均自回归(autoregressive integrated moving average,ARIMA)模型与贪心-遗传-蚁群优化(greedy-genetic-ant colony optimization,GGACO)算法的ETL任务调度机制。初期,建立ARIMA模型并弹性地结合贪心算法计算初始解;中期,利用遗传算法的全局快收敛的特性结合初始解圈定最优解的大致范围;最后,利用蚁群优化算法的局部快速收敛性进行最优解搜索。实验结果表明:该调度机制能够弹性地指导任务调度尽可能地找到最优解,减少任务的执行时间,以及尽可能实现更高效的负载均衡。 展开更多
关键词 弹性调度 ARIMA 贪心算法 遗传算法 蚁群优化算法
原文传递
基于DHPA^(*)-DSACO算法的AGV路径规划研究
8
作者 王俊岭 刘佳年 +1 位作者 边俊君 王振东 《机床与液压》 北大核心 2025年第5期15-23,共9页
自主引导车(AGV)的路径规划算法是确保其正常运行的关键部分。针对A^(*)算法在路径规划过程中存在的搜索效率低、路径曲率大的问题,以及蚁群ACO算法收敛速度慢和对参数敏感等缺陷,提出一种动态启发式惩罚A^(*)与动态感知蚁群优化算法相... 自主引导车(AGV)的路径规划算法是确保其正常运行的关键部分。针对A^(*)算法在路径规划过程中存在的搜索效率低、路径曲率大的问题,以及蚁群ACO算法收敛速度慢和对参数敏感等缺陷,提出一种动态启发式惩罚A^(*)与动态感知蚁群优化算法相融合的算法—DHPA^(*)-DSACO。DHPA^(*)算法通过设置动态权重因子,结合父节点启发距离,并引入转弯惩罚项,以降低运行时间和路径曲率。DSACO算法通过设置自适应蚁群启发因子和动态挥发因子,优化信息素更新策略,从而缩短路径长度。同时,该算法利用B样条曲线对路径进行平滑处理。为验证算法的可行性,在PyCharm环境中将DHPA^(*)-DSACO算法与其他算法进行对比测试,并对实验结果进行了分析。最后,为了模拟真实世界中的情况,基于ROS系统建立仿真平台,验证了DHPA^(*)-DSACO算法的有效性。结果表明:DHPA^(*)-DSACO算法有效降低了路径长度、曲率和运行时间,显著提升了运行效率。此外,该算法还能有效避免算法陷入局部最优解,减少收敛迭代次数,进一步增强了算法的鲁棒性,使其更好地适应AGV的实际运行情况。 展开更多
关键词 路径规划 蚁群算法 A^(*)算法 B样条曲线
在线阅读 下载PDF
白葡奈氏菌片联合信必可治疗老年ACOS的疗效及对痰细胞学分类、sICAM-1、FeNO的影响 被引量:1
9
作者 赵欣 周瑞清 蒋诗尧 《中南医学科学杂志》 2025年第3期554-557,共4页
目的探讨白葡奈氏菌片联合信必可治疗老年哮喘-慢阻肺重叠综合征(ACOS)疗效及对痰细胞学分类、可溶性细胞间黏附分子-1(sICAM-1)、呼出气一氧化氮(FeNO)的影响。方法选取ACOS患者180例,随机均分为对照组(信必可)和观察组(信必可+白葡奈... 目的探讨白葡奈氏菌片联合信必可治疗老年哮喘-慢阻肺重叠综合征(ACOS)疗效及对痰细胞学分类、可溶性细胞间黏附分子-1(sICAM-1)、呼出气一氧化氮(FeNO)的影响。方法选取ACOS患者180例,随机均分为对照组(信必可)和观察组(信必可+白葡奈氏菌片)。比较两组肺功能、诱导痰细胞学分类、相关炎症因子水平及不良反应发生情况。结果与治疗前比较,两组治疗后肺功能指标、淋巴细胞百分比均升高,嗜酸性粒细胞、中性粒细胞、单核-巨噬细胞百分比、sICAM-1、FeNO、白细胞介素(IL)-6、IL-4水平降低,且观察组治疗后改善较对照组更显著(P<0.05)。两组不良反应发生率比较差异无显著性(P>0.05)。结论白葡奈氏菌片联合信必可治疗老年ACOS疗效确切,能更有效地改善气道炎症和调节免疫细胞平衡,值得临床应用推广。 展开更多
关键词 白葡奈氏菌片 信必可 老年acoS 痰细胞学分类
暂未订购
注CO_(2)剖面氧活化测井渡越时间ACO-NM混合优化计算方法
10
作者 王争妍 陈猛 +3 位作者 杨国锋 刘国权 裴阳 陈强 《油气藏评价与开发》 北大核心 2025年第4期605-612,624,共9页
非常规油气藏注入CO_(2)驱油是提升油藏采收率的关键技术手段,脉冲中子氧活化测井是复杂管柱结构油气井监测注入CO_(2)动态的有效方法,准确解析氧元素活化谱并计算渡越时间是明确CO_(2)单层吸入量的重要基础。受活化γ射线计数率统计涨... 非常规油气藏注入CO_(2)驱油是提升油藏采收率的关键技术手段,脉冲中子氧活化测井是复杂管柱结构油气井监测注入CO_(2)动态的有效方法,准确解析氧元素活化谱并计算渡越时间是明确CO_(2)单层吸入量的重要基础。受活化γ射线计数率统计涨落误差、流体性质、多层管柱结构等因素影响,注CO_(2)活化谱峰存在单峰拖尾、双峰重叠等现象,现有方法高精度解析活化谱存在局限性。为降低重叠峰分峰及活化谱峰边界选取给渡越时间计算带来的误差,详细剖析了不同因素影响下活化谱峰形态特征,引入了蚁群优化(ACO)算法对谱线进行初步寻优,再结合单纯形(Nelder-Mead,简称NM)算法完成活化谱峰的快速高精度拟合,实现了氧活化注入剖面测井渡越时间高精度定量计算,相较于传统的人工卡峰确定峰位边界再结合加权平均或高斯函数拟合法,具有拟合效率高、人为干预少、计算误差低等优点。结合注CO_(2)剖面实测井资料处理解释对比分析,发现建立的ACO-NM最优化模型可有效实现油管和套管空间重叠峰双峰分离,通过自动卡峰拟合求取渡越时间,实现复杂管柱结构不同空间CO_(2)流量定量计算。采用ACO-NM混合优化算法计算得到的注入流体流量与井口实际注入量相对误差小于5%,相较于传统的最小二乘法计算精度提高,满足矿场CO_(2)注入动态监测评价需求。 展开更多
关键词 脉冲中子氧活化测井 渡越时间 aco-NM混合优化算法 活化谱 注CO_(2)剖面
在线阅读 下载PDF
基于SDN的ACO和PSO路由算法优化研究
11
作者 姚正 《通化师范学院学报》 2025年第4期53-59,共7页
针对现有软件定义网络路由算法存在的响应时间较长、丢包率较高、端到端延时较大、网络吞吐量较小等问题,提出基于蚁群算法和粒子群优化算法的路由算法优化设计.在用户层使用椭圆曲线密码技术进行用户身份验证,避免来自未经授权用户的... 针对现有软件定义网络路由算法存在的响应时间较长、丢包率较高、端到端延时较大、网络吞吐量较小等问题,提出基于蚁群算法和粒子群优化算法的路由算法优化设计.在用户层使用椭圆曲线密码技术进行用户身份验证,避免来自未经授权用户的数据加载;在数据层使用改进的蚁群算法和粒子群优化算法选择最优路径实现可扩展的安全路由.使用OMNeT++网络模拟器仿真实验,将改进方法与4种典型方法的实验结果进行分析,结果表明:使用改进方法后,响应时间、丢包率、端到端延时和网络吞吐量等网络性能指标均有所改进. 展开更多
关键词 身份验证 aco PSO 路由 优化
在线阅读 下载PDF
基于A-ACO算法的物流车配送路径优化分析与研究
12
作者 周艳玲 王子龙 +2 位作者 沈鑫 付余涛 崔精涛 《榆林学院学报》 2025年第2期87-92,共6页
随着物流行业的不断发展,配送环节是连接买家和卖家的主要纽带,配送时的速度、效率、安全性和经济性影响着客户的满意程度,这使得物流车在配送时追求最优路径。为了使物流车在运输货物的过程中可以有效的躲避路上的障碍物并寻找到最优路... 随着物流行业的不断发展,配送环节是连接买家和卖家的主要纽带,配送时的速度、效率、安全性和经济性影响着客户的满意程度,这使得物流车在配送时追求最优路径。为了使物流车在运输货物的过程中可以有效的躲避路上的障碍物并寻找到最优路径,本文提出A-ACO算法,该算法通过对传统的蚁群算法的基础上增加了躲避障碍物的功能和障碍物影响因子。通过Netlogo对算法进行仿真,在仿真的过程中通过改变蚂蚁的数量来得出起点与终点的最短路径。改进后的蚁群算法相比传统的蚁群算法在安全性条件下获得最优路径。最后通过仿真实验证明,A-ACO算法可以在不同障碍物分布和数量下寻找最优路径的安全性和有效性,为物流公司选择配送路径的选择提供了一定参考价值。 展开更多
关键词 蚁群算法 NETLOGO 障碍物 最优路径
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
13
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
14
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
15
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
大豆ACO家族基因鉴定、生物信息学分析及盐胁迫下表达模式分析
16
作者 张兴政 刘鑫 +2 位作者 黄浩捷 孙一闻 董志遥 《大豆科学》 北大核心 2025年第3期27-38,共12页
为了对大豆ACC合成酶基因家族(ACO)进行筛选和表达分析,利用生物信息学筛选分析其基因序列、蛋白理化性质、启动子顺式元件、基因及蛋白结构及家族成员间进化关系;采用实时荧光定量PCR检测基因在根、茎和叶片中的表达模式。结果表明:大... 为了对大豆ACC合成酶基因家族(ACO)进行筛选和表达分析,利用生物信息学筛选分析其基因序列、蛋白理化性质、启动子顺式元件、基因及蛋白结构及家族成员间进化关系;采用实时荧光定量PCR检测基因在根、茎和叶片中的表达模式。结果表明:大豆中筛选获得11条大豆ACOs同源序列,依据亚细胞定位预测结果发现大豆GmACOs基因家族编码的蛋白质分布于细胞质和细胞核中;对其与拟南芥和甜瓜等物种的ACO基因家族进行进化关系分析,结果表明大豆GmACOs基因家族进化关系与拟南芥和黄瓜更接近,所有GmACOs基因家族成员可分为3个组(GroupⅠ,GroupⅡ和GroupⅢ),其中GmACO3和GmACO4与AtACO5存在直系同源关系,GmACO7和GmACO8与AtACO1存在直系同源关系。GmACOs基因家族序列除发现GmACO_(2)基因序列不完整外,其他基因成员均含有2~3个内含子,这表明所有基因家族成员均具有非常高的保守性。基因表达分析结果表明,在根和叶中分别获得4条高盐胁迫响应基因,根中为GmACO1/3/4/7,叶中为GmACO1/2/8/11,可作为重要候选功能基因,表明大豆ACO基因家族成员响应盐胁迫的组织特异性存在一定差异,研究结果可为后续该基因家族成员参与大豆抗盐胁迫方面的深入研究提供理论基础。 展开更多
关键词 大豆 aco 生物信息学 盐胁迫 QRT-PCR
原文传递
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
17
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
基于ISPSO-ACO融合的无人机三维路径规划算法 被引量:1
18
作者 刘江庭 祝顺康 +1 位作者 顾秋逸 李大鹏 《无线电工程》 2025年第4期866-876,共11页
针对复杂环境多约束的三维环境下无人机路径规划问题,首次将球面矢量粒子群(Spherical Vector-based Particle Swarm Optimization,SPSO)算法与蚁群优化(Ant Colony Optimization,ACO)算法相结合,并对前者进行改进,提出了一种融合的无... 针对复杂环境多约束的三维环境下无人机路径规划问题,首次将球面矢量粒子群(Spherical Vector-based Particle Swarm Optimization,SPSO)算法与蚁群优化(Ant Colony Optimization,ACO)算法相结合,并对前者进行改进,提出了一种融合的无人机三维路径规划算法——改进的SPSO及ACO(Improved SPSO and ACO,ISPSO-ACO)算法。利用Piece Wise混沌映射优化SPSO算法的种群初始化和速度更新,提升初始解的质量和搜索的多样性;设计自适应惯性权重系数与学习因子,平衡算法不同迭代时期全局与局部搜索能力;改进ACO算法信息素初始化策略,利用ISPSO算法预搜索路径作为ACO算法信息素初始值的增量;引入节点伪随机转移策略,保证在搜索不失随机性的同时提高目标的指向性。仿真结果表明,ISPSO-ACO算法在多个维度上超越了其他算法,减少了三维空间搜索的盲目性,并显著提升了搜索效率和路径质量,能够有效地为无人机在不同的三维任务环境中规划出最优路径。 展开更多
关键词 无人机 路径规划 球面矢量粒子群算法 蚁群算法 混合算法
在线阅读 下载PDF
无人机监控巡检路径规划及ACO-AVNS求解算法
19
作者 陈群 孙乐天 余帆 《控制与决策》 北大核心 2025年第11期3253-3262,共10页
无人机作为一种新兴的数据采集工具,正在治安巡逻、森林防火和设施检查等监控巡检领域迅速普及.针对此类问题,提出一个混合整数规划模型,通过将监控资源的分配类比为库存管理问题,量化因过度频繁地监控而产生的成本,以优化资源分配.所... 无人机作为一种新兴的数据采集工具,正在治安巡逻、森林防火和设施检查等监控巡检领域迅速普及.针对此类问题,提出一个混合整数规划模型,通过将监控资源的分配类比为库存管理问题,量化因过度频繁地监控而产生的成本,以优化资源分配.所提出模型考虑无人机的续航限制以及监控需求拆分机制,综合优化巡检点的分配、无人机的服务路径以及每条路径的巡检周期,以最小化系统的总运营成本.为求解该模型,提出一种基于蚁群优化算法(ACO)和自适应变邻域搜索(AVNS)的混合启发式算法.在算法的每次迭代中,首先由ACO构建初始解,然后基于AVNS的6种邻域结构持续优化解的质量.在23个小规模实例中,该算法均可获得与求解器质量相当的解.对于采集自长沙市的121节点大规模实例,求解器在10 h内无法找到任何可行解,而所提出算法在较短时间内可得出质量较高的解决方案,并通过消融实验验证了所提出算法的有效性和良好的求解稳定性. 展开更多
关键词 监控巡检 无人机 路径规划 需求拆分 蚁群优化算法 变邻域搜索
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
20
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部