We report the epitaxial growth of high-quality Al_(0.8)Ga_(0.2)Sb/InAs/Al_(0.8)Ga_(0.2)Sb quantum well films characterized by high carrier mobility and strong spin-orbit coupling.By appropriately optimizing the Al-to-...We report the epitaxial growth of high-quality Al_(0.8)Ga_(0.2)Sb/InAs/Al_(0.8)Ga_(0.2)Sb quantum well films characterized by high carrier mobility and strong spin-orbit coupling.By appropriately optimizing the Al-to-Ga ratio in the AlGaSb barrier layer,the quantum confinement of the heterostructure is significantly enhanced.Alongside a giant magnetoresistance ratio of 3.65×10^(5)%,the two-carrier transport model from Hall measurements reveals an ultra-high electron mobility of 7.18×10^(5)cm^(2)·V^(-1)·s^(-1)at low temperatures.Meanwhile,pronounced Shubnikov-de Haas(SdH)quantum oscillations persist up to 30 K,and their single-frequency feature indicates a well-defined Fermi surface without subband mixing in the two-dimensional electron gas channel.Moreover,the large effective g-factor and tilted-field-induced orbital effect lead to the observation of split SdH peaks at large magnetic fields.Our results validate that AlGaSb/InAs quantum well heterostructures are suitable candidates for constructing energy-efficient topological spintronic devices.展开更多
We present a method to extend the operating wavelength of the interband transition quantum well photodetector from an extended short-wavelength infrared region to a middle-wavelength infrared region. In the modified I...We present a method to extend the operating wavelength of the interband transition quantum well photodetector from an extended short-wavelength infrared region to a middle-wavelength infrared region. In the modified In As Sb quantum well, Ga Sb is replaced with Al Sb/Al Ga Sb, the valence band of the barrier material is lowered, the first restricted energy level is higher than the valence band of the barrier material, the energy band structure forms type-II structure. The photocurrent spectrum manifest that the fabricated photodetector exhibits a response range from 1.9 μm to 3.2 μm with two peaks at 2.18 μm and 3.03 μm at 78 K.展开更多
基金supported by R&D the National Key Program of China(Grant No.2021YFA0715503)the Major Project ofShanghai Municipal Science and Technology(Grant No.2018SHZDZX02)the ShanghaiTech Mate rial Device and Soft Matter Nano-fabrication Labs(No.SMN180827).
文摘We report the epitaxial growth of high-quality Al_(0.8)Ga_(0.2)Sb/InAs/Al_(0.8)Ga_(0.2)Sb quantum well films characterized by high carrier mobility and strong spin-orbit coupling.By appropriately optimizing the Al-to-Ga ratio in the AlGaSb barrier layer,the quantum confinement of the heterostructure is significantly enhanced.Alongside a giant magnetoresistance ratio of 3.65×10^(5)%,the two-carrier transport model from Hall measurements reveals an ultra-high electron mobility of 7.18×10^(5)cm^(2)·V^(-1)·s^(-1)at low temperatures.Meanwhile,pronounced Shubnikov-de Haas(SdH)quantum oscillations persist up to 30 K,and their single-frequency feature indicates a well-defined Fermi surface without subband mixing in the two-dimensional electron gas channel.Moreover,the large effective g-factor and tilted-field-induced orbital effect lead to the observation of split SdH peaks at large magnetic fields.Our results validate that AlGaSb/InAs quantum well heterostructures are suitable candidates for constructing energy-efficient topological spintronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574362,61210014,11374340,and 11474205)the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission of China(Grant No.Z151100003515001)the National Key Technology R&D Program of China(Grant No.2016YFB0400302)。
文摘We present a method to extend the operating wavelength of the interband transition quantum well photodetector from an extended short-wavelength infrared region to a middle-wavelength infrared region. In the modified In As Sb quantum well, Ga Sb is replaced with Al Sb/Al Ga Sb, the valence band of the barrier material is lowered, the first restricted energy level is higher than the valence band of the barrier material, the energy band structure forms type-II structure. The photocurrent spectrum manifest that the fabricated photodetector exhibits a response range from 1.9 μm to 3.2 μm with two peaks at 2.18 μm and 3.03 μm at 78 K.