期刊文献+
共找到352篇文章
< 1 2 18 >
每页显示 20 50 100
Localization of False Data Injection Attacks in Power Grid Based on Adaptive Neighborhood Selection and Spatio-Temporal Feature Fusion
1
作者 Zehui Qi Sixing Wu Jianbin Li 《Computers, Materials & Continua》 2025年第11期3739-3766,共28页
False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading fail... False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model. 展开更多
关键词 Power grid security adaptive neighborhood selection spatio-temporal correlation false data injection attacks localization
在线阅读 下载PDF
Embedded solar adaptive optics telescope:achieving compact integration for high-efficiency solar observations
2
作者 Naiting Gu Hao Chen +11 位作者 Ao Tang Xinlong Fan Carlos Quintero Noda Yawei Xiao Libo Zhong Xiaosong Wu Zhenyu Zhang Yanrong Yang Zao Yi Xiaohu Wu Linhai Huang Changhui Rao 《Opto-Electronic Advances》 2025年第5期60-74,共15页
Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excess... Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces,reduced light throughput,and instrumental polarization.To address these limitations,we propose an embedded solar adaptive optics telescope(ESAOT)that intrinsically incorporates the solar AO(SAO)subsystem within the telescope's optical train,featuring a co-designed correction chain with a single Hartmann-Shack full-wavefront sensor(HS f-WFS)and a deformable secondary mirror(DSM).The HS f-WFS uses temporal-spatial hybrid sampling technique to simultane-ously resolve tip-tilt and high-order aberrations,while the DSM performs real-time compensation through adaptive modal optimization.This unified architecture achieves symmetrical polarization suppression and high system throughput by min-imizing optical surfaces.A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations.Validations in-cluding turbulence simulations,optical bench testing,and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain aboutλ/10 wavefront error during active region tracking.This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scala-bility analyses confirming direct applicability to the existing and future large solar observation facilities. 展开更多
关键词 embedded solar adaptive optics telescope(ESAOT) Hartmann-Shack full-wavefront sensor(HS f-WFS) deformable secondary mirror(DSM) high-resolution solar observations solar telescopes
在线阅读 下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
3
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 adaptive COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
在线阅读 下载PDF
Adaptive Graph Embedding With Consistency and Specificity for Domain Adaptation
4
作者 Shaohua Teng Zefeng Zheng +2 位作者 Naiqi Wu Luyao Teng Wei Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第11期2094-2107,共14页
Domain adaptation(DA) aims to find a subspace,where the discrepancies between the source and target domains are reduced. Based on this subspace, the classifier trained by the labeled source samples can classify unlabe... Domain adaptation(DA) aims to find a subspace,where the discrepancies between the source and target domains are reduced. Based on this subspace, the classifier trained by the labeled source samples can classify unlabeled target samples well.Existing approaches leverage Graph Embedding Learning to explore such a subspace. Unfortunately, due to 1) the interaction of the consistency and specificity between samples, and 2) the joint impact of the degenerated features and incorrect labels in the samples, the existing approaches might assign unsuitable similarity, which restricts their performance. In this paper, we propose an approach called adaptive graph embedding with consistency and specificity(AGE-CS) to cope with these issues. AGE-CS consists of two methods, i.e., graph embedding with consistency and specificity(GECS), and adaptive graph embedding(AGE).GECS jointly learns the similarity of samples under the geometric distance and semantic similarity metrics, while AGE adaptively adjusts the relative importance between the geometric distance and semantic similarity during the iterations. By AGE-CS,the neighborhood samples with the same label are rewarded,while the neighborhood samples with different labels are punished. As a result, compact structures are preserved, and advanced performance is achieved. Extensive experiments on five benchmark datasets demonstrate that the proposed method performs better than other Graph Embedding methods. 展开更多
关键词 adaptive adjustment consistency and specificity domain adaptation graph embedding geometrical and semantic metrics
在线阅读 下载PDF
Spatio-temporal Differentiation and Driving Factors of Industrial Ecology of Restricted Development Zone from Adaptive Perspective:A Case Study of Shandong,China
5
作者 GUO Fuyou GAO Siqi +2 位作者 TONG Lianjun QIU Fangdao YAN Hengzhou 《Chinese Geographical Science》 SCIE CSCD 2021年第2期329-341,共13页
Based on the adaptive analysis paradigm,this paper constructs an evaluation index system and an evaluation model of the level of industrial ecology of a restricted development zone from the perspective of the industri... Based on the adaptive analysis paradigm,this paper constructs an evaluation index system and an evaluation model of the level of industrial ecology of a restricted development zone from the perspective of the industrial system and of the environmental system,and studies the spatial-temporal differentiation characteristics and the driving factors of the level of industrial ecology of the restricted development zone of the Shandong Province,China,by using a variety of measurement methods.The results show that:1)In the temporal dimension,the level of industrial ecology of the research area increased from 2005 to 2017,while in the regional dimension,it was higher in the eastern coastal areas,followed by the northwestern area and the southwestern area;2)In the spatial dimension,from 2005 to 2017 the level of industrial ecology of the research area had a clear spatial dependence,and the regional spatial agglomeration of the restricted development zones with similar industrial ecology levels become increasingly evident;3)On the whole,the industrial ecology level in the study area had a clear spatial differentiation pattern,as it was higher in the north and in the east and lower in the south and in the west.Moreover,its evolution model changed from a‘three-core driven model’to a‘spatial scattered mosaic distribution model’,and then to a‘single-core driven model’;4)Industrial ecology was positively correlated with economic development,foreign investment,science and technology,and negatively correlated with the government role,while industrial structure and environmental regulation failed to pass the statistical significance test. 展开更多
关键词 adaptABILITY industrial ecology spatio-temporal differentiation restricted development zone Shandong Province China
在线阅读 下载PDF
Knowledge Graph Embedding Based on Adaptive Negative Sampling
6
作者 Saige Qin Guanjun Rao +3 位作者 Chenzhong Bin Liang Chang Tianlong Gu Wen Xuan 《国际计算机前沿大会会议论文集》 2019年第1期562-563,共2页
Knowledge graph embedding aims at embedding entities and relations in a knowledge graph into a continuous, dense, low-dimensional and realvalued vector space. Among various embedding models appeared in recent years, t... Knowledge graph embedding aims at embedding entities and relations in a knowledge graph into a continuous, dense, low-dimensional and realvalued vector space. Among various embedding models appeared in recent years, translation-based models such as TransE, TransH and TransR achieve state-of-the-art performance. However, in these models, negative triples used for training phase are generated by replacing each positive entity in positive triples with negative entities from the entity set with the same probability;as a result, a large number of invalid negative triples will be generated and used in the training process. In this paper, a method named adaptive negative sampling (ANS) is proposed to generate valid negative triples. In this method, it first divided all the entities into a number of groups which consist of similar entities by some clustering algorithms such as K-Means. Then, corresponding to each positive triple, the head entity was replaced by a negative entity from the cluster in which the head entity was located and the tail entity was replaced in a similar approach. As a result, it generated a set of high-quality negative triples which benefit for improving the effectiveness of embedding models. The ANS method was combined with the TransE model and the resulted model was named as TransE-ANS. Experimental results show that TransE-ANS achieves significant improvement in the link prediction task. 展开更多
关键词 adaptive NEGATIVE sampling KNOWLEDGE GRAPH embedding Translation-based model
在线阅读 下载PDF
Deep Bi-Directional Adaptive Gating Graph Convolutional Networks for Spatio-Temporal Traffic Forecasting
7
作者 Xin Wang Jianhui Lv +5 位作者 Madini O.Alassafi Fawaz E.Alsaadi B.D.Parameshachari Longhao Zou Gang Feng Zhonghua Liu 《Tsinghua Science and Technology》 2025年第5期2060-2080,共21页
With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adapt... With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning. 展开更多
关键词 traffic forecasting spatio-temporal modeling Graph Convolutional Networks(GCNs) adaptive gating
原文传递
Development of an electrode intelligent design system based on adaptive fuzzy neural network and genetic algorithm
8
作者 Huang Jun Xu Yuelan +1 位作者 Wang Luyuan Wang Kehong 《China Welding》 EI CAS 2014年第2期62-66,共5页
The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical propertie... The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files. 展开更多
关键词 electrode design system adaptive fuzzy neural network genetic algorithm object linking and embedding
在线阅读 下载PDF
Direct Adaptive Control Based on Gradient Estimation
9
作者 赵众 马楠楠 +2 位作者 潘立登 徐宁 孙康 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期752-761,共10页
A control method of direct adaptive control based on gradient estimation is proposed in this article. The dynamic system is embedded in a linear model set. Based on the embedding property of the dynamic system, an ada... A control method of direct adaptive control based on gradient estimation is proposed in this article. The dynamic system is embedded in a linear model set. Based on the embedding property of the dynamic system, an adaptive optimal control algorithm is proposed. The robust convergence of the proposed control algorithm has been proved and the static control error with the proposed method is also analyzed. The application results of the proposed method to the industrial polypropylene process have verified its feasibility and effectiveness. 展开更多
关键词 direct adaptive control embedding property gradient estimation robust convergence static error polypropylene process
在线阅读 下载PDF
Reversible Data Hiding in Encrypted Images Based on Adaptive Prediction and Labeling
10
作者 Jiaohua Qin Zhibin He +1 位作者 Xuyu Xiang Neal N.Xiong 《Computers, Materials & Continua》 SCIE EI 2022年第11期3613-3628,共16页
Recently,reversible data hiding in encrypted images(RDHEI)based on pixel prediction has been a hot topic.However,existing schemes still employ a pixel predictor that ignores pixel changes in the diagonal direction dur... Recently,reversible data hiding in encrypted images(RDHEI)based on pixel prediction has been a hot topic.However,existing schemes still employ a pixel predictor that ignores pixel changes in the diagonal direction during prediction,and the pixel labeling scheme is inflexible.To solve these problems,this paper proposes reversible data hiding in encrypted images based on adaptive prediction and labeling.First,we design an adaptive gradient prediction(AGP),which uses eight adjacent pixels and combines four scanning methods(i.e.,horizontal,vertical,diagonal,and diagonal)for prediction.AGP can adaptively adjust the weight of the linear prediction model according to the weight of the edge attribute of the pixel,which improves the prediction ability of the predictor for complex images.At the same time,we adopt an adaptive huffman coding labeling scheme,which can adaptively generate huffman codes for labeling according to different images,effectively improving the scheme’s embedding performance on the dataset.The experimental results show that the algorithm has a higher embedding rate.The embedding rate on the test image Jetplane is 4.2102 bpp,and the average embedding rate on the image dataset Bossbase is 3.8625 bpp. 展开更多
关键词 Reversible data hiding adaptive gradient prediction huffman coding embedding capacity
在线阅读 下载PDF
Robot Vision over CosGANs to Enhance Performance with Source-Free Domain Adaptation Using Advanced Loss Function
11
作者 Laviza Falak Naz Rohail Qamar +2 位作者 Raheela Asif Muhammad Imran Saad Ahmed 《Intelligent Automation & Soft Computing》 2024年第5期855-887,共33页
Domain shift is when the data used in training does not match the ones it will be applied to later on under similar conditions.Domain shift will reduce accuracy in results.To prevent this,domain adaptation is done,whi... Domain shift is when the data used in training does not match the ones it will be applied to later on under similar conditions.Domain shift will reduce accuracy in results.To prevent this,domain adaptation is done,which adapts the pre-trained model to the target domain.In real scenarios,the availability of labels for target data is rare thus resulting in unsupervised domain adaptation.Herein,we propose an innovative approach where source-free domain adaptation models and Generative Adversarial Networks(GANs)are integrated to improve the performance of computer vision or robotic vision-based systems in our study.Cosine Generative Adversarial Network(CosGAN)is developed as a GAN that uses cosine embedding loss to handle issues associated with unsupervised source-relax domain adaptations.For less complex architecture,the CosGAN training process has two steps that produce results almost comparable to other state-of-the-art techniques.The efficiency of CosGAN was compared by conducting experiments using benchmarked datasets.The approach was evaluated on different datasets and experimental results show superiority over existing state-of-the-art methods in terms of accuracy as well as generalization ability.This technique has numerous applications including wheeled robots,autonomous vehicles,warehouse automation,and all image-processing-based automation tasks so it can reshape the field of robotic vision with its ability to make robots adapt to new tasks and environments efficiently without requiring additional labeled data.It lays the groundwork for future expansions in robotic vision and applications.Although GAN provides a variety of outstanding features,it also increases the risk of instability and over-fitting of the training data thus making the data difficult to converge. 展开更多
关键词 Cosine generative adversarial network cosine embedding loss generative adversarial networks source free domain adaptation unsupervised learning hyper-parameter
在线阅读 下载PDF
结构调适、过程优化与行动赋能:乡村治理数字化转型的实践逻辑——基于浙江省金华市L村的案例研究 被引量:1
12
作者 张新文 万栗江 《求实》 北大核心 2025年第3期83-94,M0006,共13页
乡村治理数字化转型既是数字乡村建设的基本面向,也是乡村治理转型的发展方向。本研究基于赋能理论,提出“结构调适—过程优化—行动赋能”的分析框架,对浙江省金华市L村“智慧村社”数字治理平台案例进行剖析,从组织、制度与机制层面... 乡村治理数字化转型既是数字乡村建设的基本面向,也是乡村治理转型的发展方向。本研究基于赋能理论,提出“结构调适—过程优化—行动赋能”的分析框架,对浙江省金华市L村“智慧村社”数字治理平台案例进行剖析,从组织、制度与机制层面阐明乡村治理数字化转型的变革逻辑,强化对数字治理问题的整体性回应。通过构建乡村治理数字化转型新的解释框架,研究发现:从结构调适维度看,以技术嵌入推动乡村治理数字化由异质到标准、碎片到整体、内卷到内生转向,实现从“粗糙应对”到“精细运作”的转变;从过程优化维度看,以技术支撑再造多元互动格局,以赋权增能形塑服务治理流程,以体系创设推动价值与技术的理性统一,实现从“条块分割”到“协同联动”的转变;从行动赋能维度看,通过架设端口空间营造科学场景、融合数据集成拓展应用空间、迈向简约治理来彰显数字效用,实现从“模式僵化”到“简约高效”的转变。未来乡村建设应当坚持技术治理与工具治理的深度融合,探索新型乡村智治模式,实现乡村数字治理绩效的一体提升。 展开更多
关键词 乡村治理 结构调适 过程优化 行动赋能 数字化转型 技术嵌入 简约治理 赋能理论
在线阅读 下载PDF
意义主义学习理论:迈向AI时代教育的维度革命——基于“文化-行动-神经”三联模型的教育新范式 被引量:1
13
作者 祝智庭 《电化教育研究》 北大核心 2025年第9期5-21,共17页
文章提出意义主义学习理论(MLT),旨在应对人工智能时代教育的三重异化困境。基于“学习即变化,变化即意义,教育即促变”(3CEP)的核心命题,MLT创立了“维度驾驭力”教育新范式,通过3LS三元结构整合神经可塑性机制与文化适应性设计,为解... 文章提出意义主义学习理论(MLT),旨在应对人工智能时代教育的三重异化困境。基于“学习即变化,变化即意义,教育即促变”(3CEP)的核心命题,MLT创立了“维度驾驭力”教育新范式,通过3LS三元结构整合神经可塑性机制与文化适应性设计,为解决AI时代“意义贫困”提供了系统方案。MLT构建了包含五大构件的理论体系:3LS三元学习结构揭示“对象—关系—意构”的动态耦合机制;10DMS十维意义空间建立多维评估框架;6CS六变催化策略提供动态干预方法;8QM叩问学习法形成思维发展路径。研究融合现象学、神经教育学与跨文化研究的多元视角,证实MLT既具备解释学习神经机制(如γ/θ波耦合)的科学精确性,又保持对文化差异的敏感性(东西方脑活动差异达29%)。理论创新体现在:首次实现神经可塑性解释与文化适应框架的统一;提出“带根的生长”教育模式;为智能时代的教学实践提供系统指导。MLT的深层价值在于守护教育作为意义生成场的本质功能,其“道法术器势”的理论架构,既延续了中国“知行合一”的教育智慧传统,又为全球教育变革提供了新范式。 展开更多
关键词 意义主义学习理论 维度驾驭力 教育智慧 神经教育学 文化适应性 学习生态 意义生成 嵌根教育
在线阅读 下载PDF
双级联合投影包络内嵌堆栈自动编码器
14
作者 李勇明 朱立志 +2 位作者 王品 马洁 周传艳 《仪器仪表学报》 北大核心 2025年第2期116-131,共16页
深度堆栈自动编码器作为一种代表性的深度网络,已被广泛应用在数据科学、模式识别等领域。现有的深度堆栈自动编码器均针对原样本个体进行深度特征变换,忽略了样本之间的关联结构信息,导致其深度特征的质量往往不尽如人意。为了解决这... 深度堆栈自动编码器作为一种代表性的深度网络,已被广泛应用在数据科学、模式识别等领域。现有的深度堆栈自动编码器均针对原样本个体进行深度特征变换,忽略了样本之间的关联结构信息,导致其深度特征的质量往往不尽如人意。为了解决这一问题,提出一种新的深度堆栈自动编码器网络-双级联合投影包络内嵌堆栈自动编码器。与现有的深度堆栈自动编码器本质上不同的是,双级联合投影包络内嵌堆栈自动编码器针对样本间关联信息而非样本个体本身进行深度特征变换。该模型主要包括两部分:双级联合投影包络模块和内嵌式堆栈自动编码器。在双级联合投影包络模块中,流形样本对包络子模块用于提取原样本间局部关联信息,重构生成第1层包络样本;保持降维式聚类子模块用于提取样本的全局关联信息,重构生成第2层包络样本。双级间一致性保持模块用于优化第2层包络样本的表征能力。然后,在这2层包络样本上分别训练2个内嵌式堆栈自动编码器,获得2组深度特征。组织了4组实验,包括消融实验、算法比较、参数影响分析以及复杂度分析。实验结果表明,双级联合投影包络内嵌堆栈自动编码器提取的深度特征具有较高且稳定的质量。 展开更多
关键词 内嵌堆栈自动编码器 包络学习 双级 包络样本 聚类 域适应
原文传递
基于自适应热图的轻量化人体姿态估计算法
15
作者 马莉 杨俊祥 +1 位作者 代新冠 高航标 《计算机工程与设计》 北大核心 2025年第11期3103-3110,共8页
针对轻量化人体姿态估计算法精度低、传统热图方法不适用于多尺度关键点的检测和在嵌入式设备上延时大的问题,在LitePose基础上提出基于自适应热图的轻量化人体姿态估计算法。该算法在解耦全连接注意力模块引入并行分支生成多尺度信息,... 针对轻量化人体姿态估计算法精度低、传统热图方法不适用于多尺度关键点的检测和在嵌入式设备上延时大的问题,在LitePose基础上提出基于自适应热图的轻量化人体姿态估计算法。该算法在解耦全连接注意力模块引入并行分支生成多尺度信息,设计自适应关键点增强模块,用自适应热图自动生成多尺度关键点热图,用匈牙利算法后处理。实验结果表明,与LitePose相比,该算法在两个公开数据集上精度分别提高5.7%和6.9%,在嵌入式设备上能达30 FPS,实现高实时性。 展开更多
关键词 姿态估计 多尺度信息 自适应热图 匈牙利算法 轻量化 注意力机制 嵌入式设备
在线阅读 下载PDF
基于集成学习强化BPNN的掘进工作面温度预测模型
16
作者 马恒 张世龙 高科 《工矿自动化》 北大核心 2025年第8期88-94,158,共8页
针对现有掘进工作面温度预测方法存在预测模型泛化性不强、鲁棒性较差,且对非线性多维数据的预测能力有限的问题,提出了一种基于集成学习强化反向传播神经网络(BPNN)的掘进工作面温度预测模型,即t−SNE−BPNN−AdaBoost。首先采用t−分布随... 针对现有掘进工作面温度预测方法存在预测模型泛化性不强、鲁棒性较差,且对非线性多维数据的预测能力有限的问题,提出了一种基于集成学习强化反向传播神经网络(BPNN)的掘进工作面温度预测模型,即t−SNE−BPNN−AdaBoost。首先采用t−分布随机邻域嵌入(t−SNE)非线性降维技术,将通风机前风量、温度、相对湿度等7项高维特征降至3维,保留数据局部结构并去除噪声。然后将降维数据输入BPNN作为基分类器,经迭代训练得到初步模型。最后通过自适应推进算法(AdaBoost)集成学习,迭代训练多个BPNN弱分类器并加权组合为强分类器,增强模型泛化能力。将60组掘进工作面实测数据按8∶2划分为训练集与测试集,经5折交叉验证确定AdaBoost最优弱学习器数量为30。实验结果表明:①t−SNE−BPNN−AdaBoost预测曲线和真实值贴合度最优,整体误差小,在温度突变区段适应力强,稳定性远超SVM,BPNN和t−SNE−BPNN。②t−SNE−BPNN−AdaBoost的预测相对误差最小,几乎在5%以内,表现出最优的预测精度。③在测试集上,t−SNE−BPNN−AdaBoost的决定系数为0.9784,较SVM,BPNN,t−SNE−BPNN分别提高了60.3%,17.2%,8.1%;平均绝对误差为0.1676,均方误差为0.0567,平均绝对百分比误差为0.9640,指标均显著优于SVM,BPNN和t−SNE−BPNN,在温度突变区段适应性更强。 展开更多
关键词 掘进工作面温度预测 t−分布随机邻域嵌入 BP神经网络 t−SNE 自适应推进算法 AdaBoost集成学习 5折交叉验证
在线阅读 下载PDF
融入孪生网络与自适应注意力的句子嵌入方法
17
作者 安俊秀 万里浪 蒋思畅 《微电子学与计算机》 2025年第5期115-122,共8页
在句子嵌入研究中,当前主流方法是基于BERT的特殊分类标记[CLS]和基于Sentence-BERT的全局平均标记[MEAN]。但前者着重于句子的全局信息,表示能力存在不足,后者则存在过度表达的问题。对此,提出了一种融合孪生网络与自适应注意力的句子... 在句子嵌入研究中,当前主流方法是基于BERT的特殊分类标记[CLS]和基于Sentence-BERT的全局平均标记[MEAN]。但前者着重于句子的全局信息,表示能力存在不足,后者则存在过度表达的问题。对此,提出了一种融合孪生网络与自适应注意力的句子嵌入方法。首先,对BERT模型采用孪生网络结构,用来将句子对分别独立地映射为词嵌入向量。其次,将向量通过均衡聚合层得到词均标记[MEAN-WORD],然后将此标记与词嵌入向量结合后再通过自适应注意力层得到动态标记[DYNAMIC]。最后,根据具体的下游任务对得到的标记结果进行相应的后处理以便应用。在数据集STS-B与SNLI、SST-2上的实验证明:与近年来多种句子嵌入方法相比,该方法能够生成更好的句子嵌入,具有更好的性能表现。另外,对该方法的动态标记进行了可视化分析,以便直观理解。 展开更多
关键词 句子嵌入 BERT Sentence-BERT 孪生网络 自适应注意力
在线阅读 下载PDF
耗散结构视域下数字化投入对组织复杂适应性的影响 被引量:1
18
作者 周昊杨 刘洪 刘奂辰 《华东经济管理》 北大核心 2025年第3期104-115,共12页
面对日趋复杂动荡的外部环境,有效提升组织复杂适应性是企业保持变革创新内驱力以实现高质量发展的关键。文章基于2013—2022年中国沪深A股上市公司的数据,利用耗散结构理论实证考察数字化投入对组织复杂适应性的影响。结果表明:数字化... 面对日趋复杂动荡的外部环境,有效提升组织复杂适应性是企业保持变革创新内驱力以实现高质量发展的关键。文章基于2013—2022年中国沪深A股上市公司的数据,利用耗散结构理论实证考察数字化投入对组织复杂适应性的影响。结果表明:数字化投入能够显著提升组织复杂适应性,而组织吸收能力和组织嵌合能力将在其间起到正向调节作用。中介机制检验表明,数字化投入可通过促进企业内部的创新涌现来增强组织复杂适应性;异质性检验显示,微观经营环境和宏观政策环境的不确定性将对主效应形成“倒逼”,促使数字化投入对组织复杂适应性的正向作用更加凸显;经济后果检验则发现,数字化投入能够通过提升组织复杂适应性而促进企业的高质量发展。研究结论为中国企业通过提升组织复杂适应性来增强内生发展动力提供参考依据。 展开更多
关键词 数字化投入 组织复杂适应性 组织吸收能力 组织嵌合能力 耗散结构
在线阅读 下载PDF
重构社会基础:结构-行动视角下农村互助养老的行动逻辑
19
作者 汪龙鑫 钟丹 陈涛 《华中农业大学学报(社会科学版)》 北大核心 2025年第6期172-181,共10页
在探讨农村养老模式的社会化转型之际,学术界对于互助式养老已形成了广泛的共识,探索农村互助养老不仅要关注制度性结构嵌入,还需要聚焦本土实践的行动逻辑。基于结构化理论和实践逻辑,构建“制度嵌入-实践转换”的理论框架分析农村互... 在探讨农村养老模式的社会化转型之际,学术界对于互助式养老已形成了广泛的共识,探索农村互助养老不仅要关注制度性结构嵌入,还需要聚焦本土实践的行动逻辑。基于结构化理论和实践逻辑,构建“制度嵌入-实践转换”的理论框架分析农村互助养老行动背后所蕴含的生成逻辑。研究发现,“制度构建”和“专业补位”两股外部资源的嵌入为乡村互助养老的行动提供了基本的动力。然而,结构嵌入需要建立在本土实践的反思性调适基础之上,通过联合协商、差序动员以及组织赋能等策略保持本土实践的适应性,最终实现结构目标与养老需求的融合共生。进一步研究发现,农村互助养老的治理路径建构,表面上是国家资源的结构性嵌入与地方性知识的反思性融合之间的互动过程,其深层实质则是对制度性基础、关系性基础以及认知性基础等农村社会基础的系统性重构。只有重构农村社会深厚的社会基础,互助养老才能真正实现从外部推动到内生驱动的可持续性发展。 展开更多
关键词 农村互助养老 制度嵌入 反思性调适 社会基础
在线阅读 下载PDF
多粒度自适应嵌入融合的有向超图表示学习模型
20
作者 马紫彤 赵文博 杨哲 《小型微型计算机系统》 北大核心 2025年第3期586-593,共8页
图表示学习能够挖掘图结构数据中蕴含的丰富信息,例如结构、关系信息等.近年,涌现了大量针对高阶、复杂图结构的表示学习研究,然而针对高阶有向超图结构的研究相对有限,且存在一定的局限性:现有方法无法同时提取有向超图的高阶性和方向... 图表示学习能够挖掘图结构数据中蕴含的丰富信息,例如结构、关系信息等.近年,涌现了大量针对高阶、复杂图结构的表示学习研究,然而针对高阶有向超图结构的研究相对有限,且存在一定的局限性:现有方法无法同时提取有向超图的高阶性和方向性,导致其失去了结构优势.同时,在图表示学习中,信息通过连接边实现信息传播,堆叠网络层数时容易产生过平滑问题.为解决上述问题,本文首先设计有效且能够在通用的有向超图结构中提取信息的卷积模块,在避免信息损失下有效地传递结构信息;其次采用自适应权重的嵌入融合机制,来缓解过平滑问题.在多个不同类型的数据集上的实验表明了有向超图表示学习模型的先进性,在分类任务上的准确率最高提升4.39%. 展开更多
关键词 有向超图 表示学习 有向超图卷积 自适应嵌入融合
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部