期刊文献+
共找到1,137篇文章
< 1 2 57 >
每页显示 20 50 100
Intelligent direct analysis of physical and mechanical parameters of tunnel surrounding rock based on adaptive immunity algorithm and BP neural network 被引量:3
1
作者 Xiao-rui Wang1,2, Yuan-han Wang1, Xiao-feng Jia31.School of Civil Engineering and Mechanics,Huazhong University of Science and Technology, Wuhan 430074,China 2.Department of Civil Engineering,Nanyang Institute of Technology,Nanyang 473004,China 3.Department of Chemistry and Bioengineering,Nanyang Institute of Technology,Nanyang 473004,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第1期22-30,共9页
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic... Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock. 展开更多
关键词 adaptive immunity algorithm BP neural network physical and mechanical parameters surrounding rock direct-back analysis
在线阅读 下载PDF
Adaptive control of parallel manipulators via fuzzy-neural network algorithm 被引量:3
2
作者 Dachang ZHU Yuefa FANG 《控制理论与应用(英文版)》 EI 2007年第3期295-300,共6页
This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric u... This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF. 展开更多
关键词 Parallel manipulator adaptive control Fuzzy neural network algorithm SIMULATION
在线阅读 下载PDF
An Efficient Improved Adaptive Genetic Algorithm for Training Layered Feedforward Neural Networks
3
作者 Wang Xin-miao Yan Pu-liu Huang Tian-xi 《Wuhan University Journal of Natural Sciences》 CAS 1999年第3期318-318,共1页
Layered feedforward neural network training algorithm based on traditional BP algorithm may lead to entrapment in local optimum, and has the defects such as slow convergent speed and unsatis-fied dynamic character whi... Layered feedforward neural network training algorithm based on traditional BP algorithm may lead to entrapment in local optimum, and has the defects such as slow convergent speed and unsatis-fied dynamic character which reduce the study ability of the network. This paper presents an improved adaptive genetic algorithm (IAGA) for training the neural network efficiently that uses a forward adaptive technique and takes the advantages of the network architecture. The experimental results show that our al-gorithm outperforms BP algorithm, BGA algorithm and AGA algorithm, and the dynamic character,training accuracy and efficiency proved greatly. 展开更多
关键词 neural network genetic algorithm adaptive
在线阅读 下载PDF
Fetal ECG Extraction Based on Adaptive Linear Neural Network 被引量:1
4
作者 JIA Wen-juan YANG Chun-lan ZHONG Guo-cheng ZHOU Meng-ying WU Shui-cai 《Chinese Journal of Biomedical Engineering(English Edition)》 2011年第2期75-82,共8页
Fetal ECG extraction has the vital significance for fetal monitoring.This paper introduces a method of extracting fetal ECG based on adaptive linear neural network.The method can be realized by training a small quanti... Fetal ECG extraction has the vital significance for fetal monitoring.This paper introduces a method of extracting fetal ECG based on adaptive linear neural network.The method can be realized by training a small quantity of data.In addition,a better result can be achieved by improving neural network structure.Thus,more easily identified fetal ECG can be extracted.Experimental results show that the adaptive linear neural network can be used to extract fetal ECG from maternal abdominal signal effectively.What's more,a clearer fetal ECG can be extracted by improving neural network structure. 展开更多
关键词 fetal ECG adaptive linear neural network W-H learning rule
暂未订购
Development of an electrode intelligent design system based on adaptive fuzzy neural network and genetic algorithm
5
作者 Huang Jun Xu Yuelan +1 位作者 Wang Luyuan Wang Kehong 《China Welding》 EI CAS 2014年第2期62-66,共5页
The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical propertie... The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files. 展开更多
关键词 electrode design system adaptive fuzzy neural network genetic algorithm object linking and embedding
在线阅读 下载PDF
Application of Adaptive Whale Optimization Algorithm Based BP Neural Network in RSSI Positioning
6
作者 Duo Peng Mingshuo Liu Kun Xie 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期516-529,共14页
The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A a... The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A and signal constant n in traditional signal propagation path loss models.This algorithm utilizes the adaptive whale optimization algorithm to iteratively optimize the parameters of the backpropagation(BP)neural network,thereby enhancing its prediction performance.To address the issue of low accuracy and large errors in traditional received signal strength indication(RSSI),the algorithm first uses the extended Kalman filtering model to smooth the RSSI signal values to suppress the influence of noise and outliers on the estimation results.The processed RSSI values are used as inputs to the neural network,with distance values as outputs,resulting in more accurate ranging results.Finally,the position of the node to be measured is determined by combining the weighted centroid algorithm.Experimental simulation results show that compared to the standard centroid algorithm,weighted centroid algorithm,BP weighted centroid algorithm,and whale optimization algorithm(WOA)-BP weighted centroid algorithm,the proposed algorithm reduces the average localization error by 58.23%,42.71%,31.89%,and 17.57%,respectively,validating the effectiveness and superiority of the algorithm. 展开更多
关键词 wireless sensor network received signal strength neural network whale optimization algorithm adaptive weight factor extended Kalman filter
在线阅读 下载PDF
Adaptive Butterfly Optimization Algorithm(ABOA)Based Feature Selection and Deep Neural Network(DNN)for Detection of Distributed Denial-of-Service(DDoS)Attacks in Cloud
7
作者 S.Sureshkumar G.K.D.Prasanna Venkatesan R.Santhosh 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1109-1123,共15页
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz... Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches. 展开更多
关键词 Cloud computing distributed denial of service intrusion detection system adaptive butterfly optimization algorithm deep neural network
在线阅读 下载PDF
FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK 被引量:7
8
作者 ZHANG Dailin CHEN Youping +2 位作者 AI Wu ZHOU Zude KONG Ching Tom 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期13-16,共4页
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I... Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network. 展开更多
关键词 linear motor (LM) Back propagation(BP) algorithm neural network Anti-disturbance technology
在线阅读 下载PDF
Trajectory linearization control of an aerospace vehicle based on RBF neural network 被引量:6
9
作者 Xue Yali Jiang Changsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期799-805,共7页
An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl... An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach. 展开更多
关键词 adaptive control trajectory linearization control radial basis function neural network aerospace vehicle.
在线阅读 下载PDF
Time-delay Positive Feedback Control for Nonlinear Time-delay Systems with Neural Network Compensation 被引量:2
10
作者 NA Jing REN Xue-Mei HUANG Hong 《自动化学报》 EI CSCD 北大核心 2008年第9期1196-1202,共7页
新适应时间延期积极反馈控制器(ATPFC)为非线性的时间延期系统的一个班被介绍。建议控制计划由神经基于网络的鉴定和时间延期组成积极反馈控制器。与一个特殊动态鉴定模型一起合并的二个高顺序的神经网络(HONN)被采用识别非线性的系统... 新适应时间延期积极反馈控制器(ATPFC)为非线性的时间延期系统的一个班被介绍。建议控制计划由神经基于网络的鉴定和时间延期组成积极反馈控制器。与一个特殊动态鉴定模型一起合并的二个高顺序的神经网络(HONN)被采用识别非线性的系统。基于识别模型,本地linearization赔偿被用来处理系统的未知非线性。线性化的系统的一个time-delay-free逆模型和一个需要的引用模型被利用组成反馈控制器,它能导致系统输出追踪一个引用模型的轨道。为鉴定和靠近环的控制系统的追踪的错误的严密稳定性分析借助于Lyapunov稳定性标准被提供。模拟结果被包括表明建议计划的有效性。 展开更多
关键词 正反馈 控制系统 自动化系统 人工神经网络
在线阅读 下载PDF
Adaptive synchronization of different kinds of chaotic neural networks
11
作者 Huanxin GUAN Zhanshan WANG Huaguang ZHANG 《控制理论与应用(英文版)》 EI 2008年第2期201-207,共7页
The purpose of the paper is to present an adaptive control method for the synchronization of different classes of chaotic neural networks. A new sufficient condition for the global synchronization of two kinds of chao... The purpose of the paper is to present an adaptive control method for the synchronization of different classes of chaotic neural networks. A new sufficient condition for the global synchronization of two kinds of chaotic neural networks is derived. The proposed control method is efficient for implementing the synchronization when the parameters of the drive system are different from those of the response system. A numerical example is used to demonstrate the validity of the proposed method and the obtained result. 展开更多
关键词 Chaotic system neural networks adaptive synchronization linear matrix inequality
在线阅读 下载PDF
Control of Neural Network Feedback Linearization Based on Chaotic Particle Swarm Optimization 被引量:1
12
作者 S.X. Wang H. Li Z.X. Li 《Journal of Energy and Power Engineering》 2010年第4期37-44,共8页
A new chaotic particle swarm algorithm is proposed in order to avoid the premature convergence of the particle swarm optimization and the shortcomings of the chaotic optimization, such as slow searching speed and low ... A new chaotic particle swarm algorithm is proposed in order to avoid the premature convergence of the particle swarm optimization and the shortcomings of the chaotic optimization, such as slow searching speed and low accuracy when used in the multivariable systems or in large search space. The new algorithm combines the particle swarm algorithm and the chaotic optimization, using randomness and ergodicity of chaos to overcome the premature convergence of the particle swarm optimization. At the same time, a new neural network feedback linearization control system is built to control the single-machine infinite-bus system. The network parameters are trained by the chaos particle swarm algorithm, which makes the control achieve optimization and the control law of prime mover output torque obtained. Finally, numerical simulation and practical application validate the effectiveness of the method. 展开更多
关键词 Chaos particle swarm algorithm OPTIMIZATION neural network single-machine infinite-bus system feedback linearization.
在线阅读 下载PDF
Vehicle Plate Number Localization Using Memetic Algorithms and Convolutional Neural Networks
13
作者 Gibrael Abosamra 《Computers, Materials & Continua》 SCIE EI 2023年第2期3539-3560,共22页
This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input ... This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input image is the most important and difficult step in the detection of VPLN,a hybrid technique is introduced that fuses the outputs of three fast techniques into a pool of connected components objects(CCO)and hence enriches the solution space with more solution candidates.Due to the combination of the outputs of the three binarization techniques,many CCOs are produced into the output pool from which one or more sequences are to be selected as candidate solutions.The pool is filtered and submitted to a new memetic algorithm to select the best fit sequence of CCOs based on an objective distance between the tested sequence and the defined geometrical relationship matrix that represents the layout of the VPLN symbols inside the concerned plate prototype.Using any of the previous versions will give moderate results but with very low speed.Hence,a new local search is added as a memetic operator to increase the fitness of the best chromosomes based on the linear arrangement of the license plate symbols.The memetic operator speeds up the convergence to the best solution and hence compensates for the overhead of the used hybrid binarization techniques and allows for real-time detection especially after using GPUs in implementing most of the used techniques.Also,a deep convolutional network is used to detect false positives to prevent fake detection of non-plate text or similar patterns.Various image samples with a wide range of scale,orientation,and illumination conditions have been experimented with to verify the effect of the new improvements.Encouraging results with 97.55%detection precision have been reported using the recent challenging public Chinese City Parking Dataset(CCPD)outperforming the author of the dataset by 3.05%and the state-of-the-art technique by 1.45%. 展开更多
关键词 Genetic algorithms memetic algorithm convolutional neural network object detection adaptive binarization filters license plate detection
在线阅读 下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
14
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
在线阅读 下载PDF
A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification
15
作者 Tsu-Yang Wu Haonan Li +1 位作者 Saru Kumari Chien-Ming Chen 《Computers, Materials & Continua》 SCIE EI 2024年第4期19-46,共28页
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol... Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification. 展开更多
关键词 adaptive Fick’s law algorithm spectral convolutional neural network metaheuristic algorithm intelligent optimization algorithm hyperspectral image classification
在线阅读 下载PDF
Research on Financial Distress Prediction with Adaptive Genetic Fuzzy Neural Networks on Listed Corporations of China
16
作者 Zhibin XIONG 《International Journal of Communications, Network and System Sciences》 2009年第5期385-391,共7页
To design a multi-population adaptive genetic BP algorithm, crossover probability and mutation probability are self-adjusted according to the standard deviation of population fitness in this paper. Then a hybrid model... To design a multi-population adaptive genetic BP algorithm, crossover probability and mutation probability are self-adjusted according to the standard deviation of population fitness in this paper. Then a hybrid model combining Fuzzy Neural Network and multi-population adaptive genetic BP algorithm—Adaptive Genetic Fuzzy Neural Network (AGFNN) is proposed to overcome Neural Network’s drawbacks. Furthermore, the new model has been applied to financial distress prediction and the effectiveness of the proposed model is performed on the data collected from a set of Chinese listed corporations using cross validation approach. A comparative result indicates that the performance of AGFNN model is much better than the ones of other neural network models. 展开更多
关键词 MULTI-POPULATION adaptive GENETIC BP algorithm Fuzzy neural network Cross Validation FINANCIAL DISTRESS
在线阅读 下载PDF
Position detection of BLDC rotor based on adaptive wavelet neural network
17
作者 李永红 陈家斌 +1 位作者 赵圣飞 岳凤英 《Journal of Measurement Science and Instrumentation》 CAS 2012年第1期26-30,共5页
Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So ... Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability. 展开更多
关键词 Brushless DC(BLDC) adaptive wavelet neural network differential evolution(DE)algorithm
在线阅读 下载PDF
Adaptive Internal Model Control of a DC Motor Drive System Using Dynamic Neural Network
18
作者 Farouk Zouari Kamel Ben Saad Mohamed Benrejeb 《Journal of Software Engineering and Applications》 2012年第3期168-189,共22页
This work concerns the study of problems relating to the adaptive internal model control of DC motor in both cases conventional and neural. The most important aspects of design building blocks of adaptive internal mod... This work concerns the study of problems relating to the adaptive internal model control of DC motor in both cases conventional and neural. The most important aspects of design building blocks of adaptive internal model control are the choice of architectures, learning algorithms, and examples of learning. The choice of parametric adaptation algorithm for updating elements of the conventional adaptive internal model control shows limitations. To overcome these limitations, we chose the architectures of neural networks deduced from the conventional models and the Levenberg-marquardt during the adjustment of system parameters of the adaptive neural internal model control. The results of this latest control showed compensation for disturbance, good trajectory tracking performance and system stability. 展开更多
关键词 adaptive Internal Model Control RECURRENT neural network DC MOTOR PARAMETRIC ADAPTATION algorithm LEVENBERG-MARQUARDT
在线阅读 下载PDF
Identification of dynamic systems using support vector regression neural networks 被引量:1
19
作者 李军 刘君华 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期228-233,共6页
A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is appl... A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method. 展开更多
关键词 support vector regression neural network system identification robust learning algorithm ADAPTABILITY
在线阅读 下载PDF
Fast Learning in Spiking Neural Networks by Learning Rate Adaptation 被引量:2
20
作者 方慧娟 罗继亮 王飞 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1219-1224,共6页
For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and de... For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN. 展开更多
关键词 spiking neural networks learning algorithm learning rate adaptation Tennessee Eastman process
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部