期刊文献+

Application of Adaptive Whale Optimization Algorithm Based BP Neural Network in RSSI Positioning

在线阅读 下载PDF
导出
摘要 The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A and signal constant n in traditional signal propagation path loss models.This algorithm utilizes the adaptive whale optimization algorithm to iteratively optimize the parameters of the backpropagation(BP)neural network,thereby enhancing its prediction performance.To address the issue of low accuracy and large errors in traditional received signal strength indication(RSSI),the algorithm first uses the extended Kalman filtering model to smooth the RSSI signal values to suppress the influence of noise and outliers on the estimation results.The processed RSSI values are used as inputs to the neural network,with distance values as outputs,resulting in more accurate ranging results.Finally,the position of the node to be measured is determined by combining the weighted centroid algorithm.Experimental simulation results show that compared to the standard centroid algorithm,weighted centroid algorithm,BP weighted centroid algorithm,and whale optimization algorithm(WOA)-BP weighted centroid algorithm,the proposed algorithm reduces the average localization error by 58.23%,42.71%,31.89%,and 17.57%,respectively,validating the effectiveness and superiority of the algorithm.
出处 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期516-529,共14页 北京理工大学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.62265010,62061024) Gansu Province Science and Technology Plan(No.23YFGA0062) Gansu Province Innovation Fund(No.2022A-215)。
  • 相关文献

参考文献8

二级参考文献145

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2郝志凯,王硕.无线传感器网络定位方法综述[J].华中科技大学学报(自然科学版),2008,36(S1):224-227. 被引量:14
  • 3刘强,黄小红,冷延鹏,李龙江,毛玉明.Deployment Strategy of Wireless Sensor Networks for Internet of Things[J].China Communications,2011,8(8):111-120. 被引量:29
  • 4高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:78
  • 5Viani F, Rocca P, Oliveri G, et al. Localization, tracking, and imaging of targets in wireless sensor networks: an invited review[J]. Radio Science, 2011, DOI: 10.1029/2010RS004561.
  • 6Emeka E E and Abraham O F. A survey of system architecture requirements for health care-based wireless sensor networks[J]. Sensors, 2011, 11(5): 4875-4898.
  • 7Fernando L, Antonio-Javier G, Felipe G, et al. A comprehensive approach to WSN-based ITS applications: a survey[J]. Sensors, 2011, 11(11): 10220-10265.
  • 8Cristina A, Pedro S, Andr6s I, et al. Wireless sensor networks for oceanographic monitoring: a systematic review[J]. Sensors, 2010, 10(7): 6948-6968.
  • 9Ni Lione M, Yunhao Liu, and Yanmin Zhu. China's national research project on wireless sensor networks[J]. IEEE Wireless Communications, 2007, 14(6): 78 83.
  • 10Ldpez T S, Kim Dae-young, wireless sensors and RFID dynamic context networks[J] 240-267. Canepa G H, et al. Integrating tags into energy-efficient and Computer Journal, 2009, 52(2):.

共引文献525

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部