The indiscriminate use and disposal of ciprofloxacin(CIP)have led to its detection in water globally,which pose a huge risk to public health and water environment.Herein,(Zn-Al)LDHs modified 3D reduced graphene oxide ...The indiscriminate use and disposal of ciprofloxacin(CIP)have led to its detection in water globally,which pose a huge risk to public health and water environment.Herein,(Zn-Al)LDHs modified 3D reduced graphene oxide nanocomposite((Zn-Al)LDHs/3D-rGO)was synthesized through a feasible onepot hydrothermal method for CIP removal.The highly distributed(Zn-Al)LDHs flakes on the surface of 3D-rGO endow the resulted(Zn-Al)LDHs/3D-rGO with an excellent adsorption performance for CIP.The adsorption results showed that the adsorption process could be well interpreted by Temkin isothermal model and the pseudo second-order kinetics model.The maximal adsorption capacity of 20.01 mg·g^(-1)for CIP could be achieved under the optimal conditions optimized by response surface methodology(RSM).The inhibitory effect of co-existing ions on CIP adsorption were also discussed.The probable adsorption mechanism might be ascribed toπ-πinteractions,hydrogen bonding,electrostatic,and surface complexation.Regeneration tests showed that the obtained 3D porous material also possessed pronounced recyclability.The obtained(Zn-Al)LDHs/3D-rGO holds a great potential for removal of CIP from actual wastewater.展开更多
基金support from Basic research project of Education Department of Liaoning Province(LJKZ0256)Special Fund for Basic Scientific Research of Liaoning Province(LJKZSYLUGX027).
文摘The indiscriminate use and disposal of ciprofloxacin(CIP)have led to its detection in water globally,which pose a huge risk to public health and water environment.Herein,(Zn-Al)LDHs modified 3D reduced graphene oxide nanocomposite((Zn-Al)LDHs/3D-rGO)was synthesized through a feasible onepot hydrothermal method for CIP removal.The highly distributed(Zn-Al)LDHs flakes on the surface of 3D-rGO endow the resulted(Zn-Al)LDHs/3D-rGO with an excellent adsorption performance for CIP.The adsorption results showed that the adsorption process could be well interpreted by Temkin isothermal model and the pseudo second-order kinetics model.The maximal adsorption capacity of 20.01 mg·g^(-1)for CIP could be achieved under the optimal conditions optimized by response surface methodology(RSM).The inhibitory effect of co-existing ions on CIP adsorption were also discussed.The probable adsorption mechanism might be ascribed toπ-πinteractions,hydrogen bonding,electrostatic,and surface complexation.Regeneration tests showed that the obtained 3D porous material also possessed pronounced recyclability.The obtained(Zn-Al)LDHs/3D-rGO holds a great potential for removal of CIP from actual wastewater.