Zeolitic imidazole frameworks(ZIFs)are a class of three-dimensional(3D)skeletalmaterials with zeolitic topology composed of metal ions and imidazolium ligands,which combine the advantages of zeolites and metal-organic...Zeolitic imidazole frameworks(ZIFs)are a class of three-dimensional(3D)skeletalmaterials with zeolitic topology composed of metal ions and imidazolium ligands,which combine the advantages of zeolites and metal-organic frameworks.ZIFs are widely used for adsorption of carbon dioxide(CO_(2))from flue gas due to its excellent hydrophobicity,chemical stability,thermal stability and gas adsorption properties.This study focuses on the effects of structures of ZIFs on CO_(2)capture and separation from the viewpoints of topologies,pore channels,ligand functional groups and composite structures.On this basis,the mechanisms of CO_(2)adsorption and selective separation are reviewed,as well as the challenges such as hydrophobicity,thermal and chemical stability faced by ZIFs in practical applications.展开更多
The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal ...The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal nanoparticles aggregation during pyrolysis process. Herein, we reported the efficient synthesis of nitrogen doped carbon hollow nanospheres with cobalt nanoparticles (Co NP, ca. 10nm in size) distributed uniformly in the shell via pyrolysis of yolk-shell structured Zn-Co-ZIFs@polydopamine (PDA). PDA acted as both protection layer and carbon source, which successfully prevented the aggregation of cobalt nanoparticles during high-temperature pyrolysis process. The Co NP and N containing carbon (Co NP/NC) hollow nanospheres were active for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), affording overpotential of 430 mV at 10 mA/cm2 for OER in 1 M KOH and comparable half-wave potential to that of Pt/C (0.80V vs RHE) for ORR in 0.1 M KOH. The superior performance of carbon hollow nanospheres for both OER and ORR was mainly attributed to its small metal nanoparticles, N-doping and hollow nanostructure. The protection and confinement effect that originated from PDA coating strategy could be extended to the synthesis of other hollow structured carbon materials, especially the ones with small metal nanoparticles.展开更多
Electron energy dissipation is an important energy dissipation pathway that cannot be ignored in friction process.Two-dimensional zeolite imidazole frameworks(2D ZIFs)and fluorine doping strategies give 2D Zn-ZIF and ...Electron energy dissipation is an important energy dissipation pathway that cannot be ignored in friction process.Two-dimensional zeolite imidazole frameworks(2D ZIFs)and fluorine doping strategies give 2D Zn-ZIF and 2D Co-ZIF unique electrical properties,making them ideal materials for studying electron energy dissipation mechanism.In this paper,based on the superlubricity modulation of 2D fluoridated ZIFs,the optimal tribological properties are obtained on the 2D F-Co-ZIF surface,with the friction coefficient as low as 0.0010.Electrical experiments,density functional theory(DFT)simulation,and fluorescence detection are used to explain the mechanism of fluorine doping regulation of tribological properties from the two stages,namely energy transfer and energy release.Specifically,the energy will transfer into the friction system through the generation of electron–hole pairs under an external excitation,and release by radiation and non-radiation energy dissipation channels.Fluorination reduces energy transfer by altering the electronic properties and band structures of ZIFs,and slows down the charge transfer by enhancing the shielding efficiency,thus slowing the non-radiative energy dissipation rate during the energy release stage.Our insights not only help us better understand the role of fluorine doping in improving tribological properties,but also provide a new way to further explore the electron energy dissipation pathway during friction.展开更多
AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(...AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS),photoluminescence(PL)spectroscopy,electron spin resonance(ESR)spectroscopy,transient photocurrent and electrochemical impedance spectroscopy(EIS)were used to characterize binary composites.Tetracycline(TC)was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions,and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents.In addition,we further investigated the photocatalytic mechanism of the binary composite material AgVO_(3)/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst.The experimental results show that the degradation efficiency of 10%-AZ,prepared with a molar ratio of 10%AgVO_(3)and ZIF-8 to TC,was 75.0%.This indicates that the photocatalytic activity can be maintained even under a certain ionic content,making it a suitable photocatalyst for optimal use.In addition,the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.展开更多
Zeolite imidazole frameworks(ZIFs),a class of the metal organic framework,have been extensively studied in environmental applications.However,their environmental fate and potential ecological impact on plants remain u...Zeolite imidazole frameworks(ZIFs),a class of the metal organic framework,have been extensively studied in environmental applications.However,their environmental fate and potential ecological impact on plants remain unknown.Here,we investigated the phytotoxicity,transformation,and bioaccumulation processes of two typical ZIFs(ZIF-8 and ZIF-67)in rice(Oryza sativa L.)under hydroponic conditions.ZIF-8 and ZIF-67 in the concentration of 50 mg/L decreased root and shoot dry weight maximally by 55.2%and 27.5%,53.5%and 37.5%,respectively.The scanning electron microscopy(SEM)imaging combined with X-ray diffraction(XRD)patterns revealed that ZIFs on the root surface gradually collapsed and transformed into nanosheets with increasing cultivation time.The fluorescein isothiocyanate(FITC)labeled ZIFs were applied to trace the uptake and translocation of ZIFs in rice.The results demonstrated that the transformed ZIFs were mainly distributed in the intercellular spaces of rice root,while they cannot be transported to culms and leaves.Even so,the Co and Zn contents of rice roots and shoots in the ZIFs treated groups were increased by 1145%and 1259%,145%and 259%,respectively,compared with the control groups.These findings suggested that the phytotoxicity of ZIFs are primarily attributed to the transformed ZIFs and to a less extent,the metal ions and their ligands,and they were internalized by rice root and increased the Co and Zn contents of shoots.This study reported the transformation of ZIFs and their biological effectiveness in rice,highlighting the potential environmental hazards and risks of ZIFs to crop plants.展开更多
Constructing high-performance electrocatalysts for oxygen evolution reaction(OER) using a simple and economical strategy is considerably meaningful yet still challenging. Herein, Co(OH)_(2)/Mo_(2)Ti C_(2)T_(x)(where T...Constructing high-performance electrocatalysts for oxygen evolution reaction(OER) using a simple and economical strategy is considerably meaningful yet still challenging. Herein, Co(OH)_(2)/Mo_(2)Ti C_(2)T_(x)(where Txrepresents the surface functional groups,-O,-OH and-F) hetero-nanosheets were facilely prepared by the in situ topochemical transformation at room temperature towards efficient OER. The integrity of Co(OH)_(2)nanosheets and Mo_(2)Ti C_(2)T_(x) nanosheets affords interfacial coupling to optimize the electronic structures of Co and Mo ions, which endows the high electron transfer efficiency and rapid reaction kinetics. As a result, the Co(OH)_(2)/Mo_(2)Ti C_(2)T_(x) hetero-nanosheets exhibit excellent OER performances with low overpotentials of 283 m V on glass-carbon electrode, and 227 m V on nickel foam at 10 m A/cm^(2). Furthermore, the decent anti-alkali ability underpins superior operational stability exceeding 100 h, demonstrating grand potential in practical applications. This work provides a new insight for the synthesis of efficient and cost-effective two-dimensional(2D) material-based electrocatalysts.展开更多
基金supported by the Fundamental Research Program of Shanxi Province(Nos.20210302124003 and 20210302124015)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2021L032)+2 种基金the National Natural Science Foundation of China(No.52103307)China Postdoctoral Science Foundation(No.2023M742575)the General Program of Shanxi Province(No.202203021211150).
文摘Zeolitic imidazole frameworks(ZIFs)are a class of three-dimensional(3D)skeletalmaterials with zeolitic topology composed of metal ions and imidazolium ligands,which combine the advantages of zeolites and metal-organic frameworks.ZIFs are widely used for adsorption of carbon dioxide(CO_(2))from flue gas due to its excellent hydrophobicity,chemical stability,thermal stability and gas adsorption properties.This study focuses on the effects of structures of ZIFs on CO_(2)capture and separation from the viewpoints of topologies,pore channels,ligand functional groups and composite structures.On this basis,the mechanisms of CO_(2)adsorption and selective separation are reviewed,as well as the challenges such as hydrophobicity,thermal and chemical stability faced by ZIFs in practical applications.
文摘The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal nanoparticles aggregation during pyrolysis process. Herein, we reported the efficient synthesis of nitrogen doped carbon hollow nanospheres with cobalt nanoparticles (Co NP, ca. 10nm in size) distributed uniformly in the shell via pyrolysis of yolk-shell structured Zn-Co-ZIFs@polydopamine (PDA). PDA acted as both protection layer and carbon source, which successfully prevented the aggregation of cobalt nanoparticles during high-temperature pyrolysis process. The Co NP and N containing carbon (Co NP/NC) hollow nanospheres were active for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), affording overpotential of 430 mV at 10 mA/cm2 for OER in 1 M KOH and comparable half-wave potential to that of Pt/C (0.80V vs RHE) for ORR in 0.1 M KOH. The superior performance of carbon hollow nanospheres for both OER and ORR was mainly attributed to its small metal nanoparticles, N-doping and hollow nanostructure. The protection and confinement effect that originated from PDA coating strategy could be extended to the synthesis of other hollow structured carbon materials, especially the ones with small metal nanoparticles.
基金supported by the National Natural Science Foundation of China(Nos.52350323 and 52105194)the National Postdoctoral Fellowship Program of China(No.GZB20230340)the Project was funded by the China Postdoctoral Science Foundation(Nos.2023TQ0184 and 2023M731941).
文摘Electron energy dissipation is an important energy dissipation pathway that cannot be ignored in friction process.Two-dimensional zeolite imidazole frameworks(2D ZIFs)and fluorine doping strategies give 2D Zn-ZIF and 2D Co-ZIF unique electrical properties,making them ideal materials for studying electron energy dissipation mechanism.In this paper,based on the superlubricity modulation of 2D fluoridated ZIFs,the optimal tribological properties are obtained on the 2D F-Co-ZIF surface,with the friction coefficient as low as 0.0010.Electrical experiments,density functional theory(DFT)simulation,and fluorescence detection are used to explain the mechanism of fluorine doping regulation of tribological properties from the two stages,namely energy transfer and energy release.Specifically,the energy will transfer into the friction system through the generation of electron–hole pairs under an external excitation,and release by radiation and non-radiation energy dissipation channels.Fluorination reduces energy transfer by altering the electronic properties and band structures of ZIFs,and slows down the charge transfer by enhancing the shielding efficiency,thus slowing the non-radiative energy dissipation rate during the energy release stage.Our insights not only help us better understand the role of fluorine doping in improving tribological properties,but also provide a new way to further explore the electron energy dissipation pathway during friction.
文摘AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS),photoluminescence(PL)spectroscopy,electron spin resonance(ESR)spectroscopy,transient photocurrent and electrochemical impedance spectroscopy(EIS)were used to characterize binary composites.Tetracycline(TC)was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions,and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents.In addition,we further investigated the photocatalytic mechanism of the binary composite material AgVO_(3)/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst.The experimental results show that the degradation efficiency of 10%-AZ,prepared with a molar ratio of 10%AgVO_(3)and ZIF-8 to TC,was 75.0%.This indicates that the photocatalytic activity can be maintained even under a certain ionic content,making it a suitable photocatalyst for optimal use.In addition,the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.
基金This work was supported by the National Natural Science Foundation of China(Nos.30800705 and 31101599)the Provincial Natural Science Foundation of Zhejiang(Nos.LY15C150004 and LY18C150007)the Key Research and Devel opment Projects of Social Development of Jinhua Science and Technology Program(No.2021C22750).
文摘Zeolite imidazole frameworks(ZIFs),a class of the metal organic framework,have been extensively studied in environmental applications.However,their environmental fate and potential ecological impact on plants remain unknown.Here,we investigated the phytotoxicity,transformation,and bioaccumulation processes of two typical ZIFs(ZIF-8 and ZIF-67)in rice(Oryza sativa L.)under hydroponic conditions.ZIF-8 and ZIF-67 in the concentration of 50 mg/L decreased root and shoot dry weight maximally by 55.2%and 27.5%,53.5%and 37.5%,respectively.The scanning electron microscopy(SEM)imaging combined with X-ray diffraction(XRD)patterns revealed that ZIFs on the root surface gradually collapsed and transformed into nanosheets with increasing cultivation time.The fluorescein isothiocyanate(FITC)labeled ZIFs were applied to trace the uptake and translocation of ZIFs in rice.The results demonstrated that the transformed ZIFs were mainly distributed in the intercellular spaces of rice root,while they cannot be transported to culms and leaves.Even so,the Co and Zn contents of rice roots and shoots in the ZIFs treated groups were increased by 1145%and 1259%,145%and 259%,respectively,compared with the control groups.These findings suggested that the phytotoxicity of ZIFs are primarily attributed to the transformed ZIFs and to a less extent,the metal ions and their ligands,and they were internalized by rice root and increased the Co and Zn contents of shoots.This study reported the transformation of ZIFs and their biological effectiveness in rice,highlighting the potential environmental hazards and risks of ZIFs to crop plants.
基金supported by the National Natural Science Foundation of China (Nos. 22371165, 21971143, 22209098)the Natural Science Foundation of Hubei Province (No. 2022CFB326)+3 种基金the 111 Project (No. D20015)ITOYMR in the Higher Education Institutions of Hubei Province (No. T201904)the Key Project Foundation of Hubei Three Gorges Laboratory (No. Z2022078)the Opening Foundation of Hubei Three Gorges Laboratory (No. SK213002)。
文摘Constructing high-performance electrocatalysts for oxygen evolution reaction(OER) using a simple and economical strategy is considerably meaningful yet still challenging. Herein, Co(OH)_(2)/Mo_(2)Ti C_(2)T_(x)(where Txrepresents the surface functional groups,-O,-OH and-F) hetero-nanosheets were facilely prepared by the in situ topochemical transformation at room temperature towards efficient OER. The integrity of Co(OH)_(2)nanosheets and Mo_(2)Ti C_(2)T_(x) nanosheets affords interfacial coupling to optimize the electronic structures of Co and Mo ions, which endows the high electron transfer efficiency and rapid reaction kinetics. As a result, the Co(OH)_(2)/Mo_(2)Ti C_(2)T_(x) hetero-nanosheets exhibit excellent OER performances with low overpotentials of 283 m V on glass-carbon electrode, and 227 m V on nickel foam at 10 m A/cm^(2). Furthermore, the decent anti-alkali ability underpins superior operational stability exceeding 100 h, demonstrating grand potential in practical applications. This work provides a new insight for the synthesis of efficient and cost-effective two-dimensional(2D) material-based electrocatalysts.