This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the i...This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the impact of wakes on turbine effective wind speed is analyzed,leading to a quantitative method for assessing wake interactions.Based on these interactions,a partitioning method divides the wind farm into smaller,computationally manageable zones.Subsequently,a heuristic control algorithm is developed for yaw optimization within each partition,reducing the overall computational burden associated with multi-turbine optimization.The algorithm’s effectiveness is evaluated through case studies on 11-turbine and 28-turbine wind farms,demonstrating power generation increases of 9.78%and 1.78%,respectively,compared to baseline operation.The primary innovation lies in coupling the higher-fidelity dynamic FLORIDyn wake model with a graph-based partitioning strategy and a computationally efficient heuristic optimization,enabling scalable and accurate yaw control for large wind farms,overcoming limitations associated with simplified models or centralized optimization approaches.展开更多
A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin...A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.展开更多
Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena i...Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood.This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics(CFD).In the CFD model,the blades are segmented radially to comprehensively analyze the distribution patterns of torque,axial load,and tangential load.The following results are obtained.(i)After applying flapwise vibration,the torque and axial thrust of wind turbines decrease in relation to those of the rigid model,with significantly increased fluctuations.(ii)Flapwise vibration causes the blades to reciprocate along the axial direction,altering the local angle of attack and velocity of the blades relative to the incoming wind flow.This results in the contraction of the torque region from a circular shape to a complex“gear”shape,which is accompanied by evident oscillations.(iii)Compared to the tangential load,the axial load on the blades is more sensitive to flapwise vibration although both exhibit significantly enhanced fluctuations.This study not only reveals the impact of flapwise vibration on wind turbine blade performance,including the reduction of torque and axial thrust and increased operational fluctuations,but also clarifies the radial distribution patterns of blade aerodynamic characteristics,which is of great significance for optimizing wind turbine blade design and reducing fatigue risks.展开更多
Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for d...Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for detecting faces across a wide range of angles from 0°to±90°.We initially selected the most suitable feature vector size by integrating the Dlib,FaceNet(Inception-v2),and“Support Vector Machines(SVM)”+“K-nearest neighbors(KNN)”algorithms.To train and evaluate this feature vector,we used two datasets:the“Labeled Faces in the Wild(LFW)”benchmark data and the“Robust Shape-Based FR System(RSBFRS)”real-time data,which contained face images with varying yaw poses.After selecting the best feature vector,we developed a real-time FR system to handle yaw poses.The proposed FaceNet architecture achieved recognition accuracies of 99.7%and 99.8%for the LFW and RSBFRS datasets,respectively,with 128 feature vector dimensions and minimum Euclidean distance thresholds of 0.06 and 0.12.The FaceNet+SVM and FaceNet+KNN classifiers achieved classification accuracies of 99.26%and 99.44%,respectively.The 128-dimensional embedding vector showed the highest recognition rate among all dimensions.These results demonstrate the effectiveness of our proposed approach in enhancing FR accuracy,particularly in real-world scenarios with varying yaw poses.展开更多
Introduction: The WHO recommends mass administration of azithromycin 30 mg/kg to eradicate yaws and 20 mg/kg to eliminate trachoma. We evaluated the effectiveness of azithromycin at 20 and 30 mg/Kg, and the number of ...Introduction: The WHO recommends mass administration of azithromycin 30 mg/kg to eradicate yaws and 20 mg/kg to eliminate trachoma. We evaluated the effectiveness of azithromycin at 20 and 30 mg/Kg, and the number of cycles of mass administration on the treatment and interruption of yaws transmission in the Mbaïki health district in the Central African Republic. Methods: Following a yaws prevalence survey, azithromycin was administered as a mass treatment in four yaws endemic communities in the Mbaïki health district. Azithromycin 30 mg/kg was administered in one cycle in Kenengué and three cycles spaced three months apart in Bambou. In Kapou and Bangui-Bouchia, azithromycin was administered at a dose of 20 mg/kg in one cycle and three cycles, respectively, spaced three months apart. Before the mass treatment round, confirmed yaw cases were selected and followed for seven months. The primary endpoint was serological cure seven months after the first treatment cycle. Secondary endpoints were clinical cure at four weeks after the first treatment cycle and serological cure at four months after the first treatment cycle. A non-inferiority margin (∆) of 10% was used. Results: A total of 92 participants aged 1 to 90 years, including 52 men, were included in the study. The frequently encountered skin lesions were ulcers (65.22%) and were localized to the lower limbs (59.78%). Clinical cure was not obtained in Bangui-Bouchia and Kapou (∆ = 17.1% and 30.8%). Serological cure at four and seven months was not obtained in Kapou (∆ equal to 17.9% and 13.8% respectively). Conclusion: This study confirms the effectiveness of azithromycin 30 mg/kg in a single dose for the treatment of yaws. However, the study suggests that for yaws eradication programs, two to three cycles of mass administration of azithromycin at 20 or 30 mg/kg spaced three months apart, with therapeutic coverage greater than 90% are essential.展开更多
Road friction coefficient is a key factor for the stability control of the vehicle dynamics in the critical conditions. Obviously the vehicle dynamics stability control systems, including the anti-lock brake system(...Road friction coefficient is a key factor for the stability control of the vehicle dynamics in the critical conditions. Obviously the vehicle dynamics stability control systems, including the anti-lock brake system(ABS), the traction control system(TCS), and the active yaw control(AYC) system, need the accurate tire and road friction information. However, the simplified method based on the linear tire and vehicle model could not obtain the accurate road friction coefficient for the complicated maneuver of the vehicle. Because the active braking control mode of AYC is different from that of ABS, the road friction coefficient cannot be estimated only with the dynamics states of the tire. With the related dynamics states measured by the sensors of AYC, a comprehensive strategy of the road friction estimation for the active yaw control is brought forward with the sensor fusion technique. Firstly, the variations of the dynamics characteristics of vehicle and tire, and the stability control mode in the steering process are considered, and then the proper road friction estimation methods are brought forward according to the vehicle maneuver process. In the steering maneuver without braking, the comprehensive road friction from the four wheels may be estimated based on the multi-sensor signal fusion method. The estimated values of the road friction reflect the road friction characteristic. When the active brake involved, the road friction coefficient of the braked wheel may be estimated based on the brake pressure and tire forces, the estimated values reflect the road friction between the braked wheel and the road. So the optimal control of the wheel slip rate may be obtained according to the road friction coefficient. The methods proposed in the paper are integrated into the real time controller of AYC, which is matched onto the test vehicle. The ground tests validate the accuracy of the proposed method under the complicated maneuver conditions.展开更多
Horizontal axis wind turbine(HAWT)often works under yaw due to the stochastic variation of wind direction.Yaw also can be used as one of control methods for load reduction and wake redirection of HAWT.Thus,the aerodyn...Horizontal axis wind turbine(HAWT)often works under yaw due to the stochastic variation of wind direction.Yaw also can be used as one of control methods for load reduction and wake redirection of HAWT.Thus,the aerodynamic performance under yaw is very important to the design of HAWT.For further insight into the highly unsteady characteristics aerodynamics of HAWT under yaw,this paper investigates the unsteady variations of the aerodynamic performance of a small wind turbine under static yawed and yawing process with sliding grid method,as well as the there-dimensional effect on the unsteady characteristics,using unsteady Reynolds-averaged Navier-Stokes(URANS)simulations.The simulation results are validated with experimental data and blade element momentum(BEM)results.The comparisons show that the CFD results have better agreement with the experimental data than both BEM results.The wind turbine power decreases according to a cosine law with the increase of yaw angle.The torque under yaw shows lower frequency fluctuations than the non-yawed condition due to velocity component of rotation and the influence of spinner.Dynamic yawing causes larger fluctuate than static yaw,and the reason is analyzed.The aerodynamic fluctuation becomes more prominent in the retreating side than that in the advancing side for dynamic yawing case.Variations of effective angle of attack and aerodynamic forces along the blade span are analyzed.The biggest loading position moves from middle span to outer span with the increase of yaw angle.Three-dimensional stall effect presents load fluctuations at the inner board of blade,and becomes stronger with the increase of yaw angle.展开更多
Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the...Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model.展开更多
Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. Th...Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. The first one relates to a lateral translation and, separately, to a yaw rotation. The second one consists of a combined translational and rotational motion. To determine dynamic yaw stability derivatives, the simulation of an unsteady flow with a bird model showing a harmonic motion is performed. The flow solution for each time step is obtained by solving unsteady Euler equations based on a finite volume approach for a small reduced frequency. Then, an evaluation of unsteady forces and moments for one cycle is conducted using harmonic Fourier analysis. The results of the dynamic yaw stability derivatives for both simulations of the model show a good agreement.展开更多
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A...For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.展开更多
The experimental data obtained from yaw-roll coupled wind tunnel tests are used for lateral-directional departure prediction,by linearizing the_b model to extract nominal dynamic derivatives at each coupling ratio.The...The experimental data obtained from yaw-roll coupled wind tunnel tests are used for lateral-directional departure prediction,by linearizing the_b model to extract nominal dynamic derivatives at each coupling ratio.The prediction results are compared with those of the existing engineering methods which are based on the conventional aerodynamic derivatives.The comparison shows that the yaw-roll coupling ratio has a great influence on the departure susceptibility.The departure resistance will loss in partial region of the coupling ratio when the angle of attack is higher than a critical value.According to the stable and unstable regions of coupling ratio,a two-segment stability augmentation system with two different feedback gain matrices is obtained by pole-placement method.The two-segment stability augmentation system is used in the simulations of straight and level flight,steady turn,spin recovery and Herbst maneuver.The simulation results are also compared with the applications of a fixed-gain stability augmentation system designed by the conventional aerodynamic derivatives.When the yaw-roll coupling effects are fully considered,the two-segment stability augmentation system is more effective for departure restraint and can provide a better flying quality with less control energy.展开更多
High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four typ...High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four types of typical yaw damper layouts for a high-speed locomotive(Bo-Bo)and compares,by using the multi-objective optimization method,the influences of those layouts on the lateral dynamics performance of the locomotive;the linear stability indexes under lowconicity and high-conicity conditions are selected as optimization objectives.Furthermore,the radial basis function-based highdimensional model representation(RBF-HDMR)method is used to conduct a global sensitivity analysis(GSA)between key suspension parameters and the lateral dynamics performance of the locomotive,including the lateral ride comfort on straight tracks under the low-conicity condition,and also the operational safety on curved tracks.It is concluded that the layout of yaw dampers has a considerable impact on low-conicity stability and lateral ride comfort but has little influence on curving performance.There is also an important finding that only when the locomotive adopts the layout with opening outward,the difference in lateral ride comfort between the front and rear ends of the carbody can be eliminated by adjusting the lateral installation angle of the yaw dampers.Finally,force analysis and modal analysis methods are adopted to explain the influence mechanism of yaw damper layouts on the lateral stability and differences in lateral ride comfort between the front and rear ends of the carbody.展开更多
Experimental investigation of large amplitude yaw-roll coupled oscillations was conducted in a low-speed wind tunnel using an aircraft configuration model. A special test rig was designed and constructed to provide di...Experimental investigation of large amplitude yaw-roll coupled oscillations was conducted in a low-speed wind tunnel using an aircraft configuration model. A special test rig was designed and constructed to provide different coupled motions from low to high angles of attack.A parameter ‘‘coupling ratio" was introduced to indicate the extent of yaw-roll coupling. At each pitch angle, seven coupling ratios were designed to study the yaw-roll coupling effects on the lateraldirectional aerodynamic characteristics systematically. At high angles of attack, the damping characteristics of yawing and rolling moments drastically varied with coupling ratios. In the coupled motions with the rotation taking place about the wind axis, the lateral-directional aerodynamic moments exhibited unsteady characteristics and were different from the ‘‘quasi-steady" results of the rotary balance tests. The calculated results of the traditional aerodynamic derivative method were also compared with the experimental data. At low and very high angles of attack, the aerodynamic derivative method was applicative. However, within a wide range of angles of attack, the calculated results of aerodynamic derivative method were inconsistent with the experimental data, due to the drastic changes of damping characteristics of lateral-directional aerodynamic moments with yaw-roll coupling ratios.展开更多
Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplif...Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.展开更多
The effects of different yaw angles on the aerodynamic performance of city electric multiple units(EMUs)were investigated in a wind tunnel using a 1:16.8 scaled model.Pressure scanning valve and six-component box-type...The effects of different yaw angles on the aerodynamic performance of city electric multiple units(EMUs)were investigated in a wind tunnel using a 1:16.8 scaled model.Pressure scanning valve and six-component box-type aerodynamic balance were used to test the pressure distribution and aerodynamic force of the head car respectively from the 1.5-and 3-coach grouping city EMU models.Meanwhile,the effects of the yaw angles on the pressure distribution of the streamlined head as well as the aerodynamic forces of the train were analyzed.The experimental results showed that the pressure coefficient was the smallest at the maximum slope of the main shape-line.The side force coefficient and pressure coefficient along the head car cross-section were most affected by crosswind when the yaw angle was 55°,and replacing a 3-coach grouping with a 1.5-coach grouping had obvious advantages for wind tunnel testing when the yaw angle was within 24.2°.In addition,the relative errors of lift coefficient C_(L),roll moment coefficient C_(Mx),side force coefficient C_(S),and drag coefficient C_(D)between the 1.5-and 3-coach cases were below 5.95%,which all met the requirements of the experimental accuracy.展开更多
For achieving the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a novel yaw effector based on Reverse Dual Synthetic Jets(RDSJ)was proposed without the movement of rudders.Eff...For achieving the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a novel yaw effector based on Reverse Dual Synthetic Jets(RDSJ)was proposed without the movement of rudders.Effects on aerodynamic characteristics of a small-sweep FWA and control mechanism were investigated by numerical simulations.Finally,reverse dual synthetic jet actuators were integrated into a real FWA and flight tests were firstly carried out.Numerical results show that RDSJ could make drag coefficient increase and weaken lift coefficient,which generate a yawing moment and a rolling moment in the same direction,realizing control of heading attitudes,but strong coupling with the pitching moment occurs at large angles of attack.For control mechanism,RDSJ could produce two reverse synthetic jets out of phases,improve the reverse pressure gradient and hence form alternate recirculation zones or even early large-area separation,which cause the rise of pressures before exits and the dip of pressures behind exits,achieving improvement of drag and the yawing moment.The results of flight tests support that RDSJ could realize control of heading attitudes without deflections of rudders during the cruise stage and achieve the maximal yaw angular velocity of 10.12(°)/s,verifying the feasibility of this novel yaw effector.展开更多
This study investigates how the debris cloud structure and hazardous fragment distribution vary with attack angle by simulating a circular cylinder projectile hypervelocity impinging on a thin plate using the finite e...This study investigates how the debris cloud structure and hazardous fragment distribution vary with attack angle by simulating a circular cylinder projectile hypervelocity impinging on a thin plate using the finite element-smoothed particle hydrodynamics(FE-SPH)adaptive method.Based on the comparison and analysis of the experimental and simulation results,the FE-SPH adaptive method was applied to address the hypervelocity yaw impact problem,and the variation law of the debris cloud structure with the attack angle was obtained.The screening criterion of the hazardous fragment at yaw impact is given by analyzing the debris formation obtained by the FE-SPH adaptive method,and the distribution characteristics of hazardous fragments and their relationship with the attack angle are given.Moreover,the velocity space was used to evaluate the distribution range and damage capability of asymmetric hazardous fragments.The maximum velocity angle was extended from fully symmetrical working conditions to asymmetrical cases to describe the asymmetrical debris cloud distribution range.In this range,the energy density was calculated to quantitatively analyze how much damage hazardous fragments inflict on the rear plate.The results showed that the number of hazardous fragments generated by the case near the 35°attack angle was the largest,the distribution range was the smallest,and the energy density was the largest.These results suggest that in this case,debris cloud generated by the impact had the strongest damage to the rear plate.展开更多
Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is...Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is constructed based on model predictive control.Aiming at minimizing the utilization rate of tire adhesion and constrained by the working characteristics of motor system and brake system,a quadratic programming active set was designed to optimize the distribution of additional yaw moments.The road surface adhesion coefficient has a great impact on the reliability of direct yaw moment control,for which joint observer of vehicle state parameters and road surface parameters is designed by using unscented Kalman filter algorithm,which correlates vehicle state observer and road surface parameter observer to form closed-loop feedback correction.The results show that compared to the“feedforward+feedback”control,the vehicle’s error of yaw rate and sideslip angle by the model predictive control is smaller,which can improve the vehicle stability effectively.In addition,according to the results of the docking road simulation test,the joint observer of vehicle state and road surface parameters can improve the adaptability of the vehicle stability controller to the road conditions with variable adhesion coefficients.展开更多
A genetic algorithm is proposed to optimize the yaw control system used for the stable and efficient operation of turbines in wind power plants.In particular,the factors that produce yaw static deviation are analyzed....A genetic algorithm is proposed to optimize the yaw control system used for the stable and efficient operation of turbines in wind power plants.In particular,the factors that produce yaw static deviation are analyzed.Then,the sought optimization method for the yaw static deviation of the wind turbine is implemented by using a lidar wind meter in the engine room in order to solve the low accuracy problem caused by yaw static deviation.It is shown that fuzzy control can overcome problematic factors such as the randomness of wind direction and track the change of wind direction accurately.Power control implementation is simple,as only the voltage and current of the generator need to be measured.展开更多
基金supported by the Science and Technology Project of China South Power Grid Co.,Ltd.under Grant No.036000KK52222044(GDKJXM20222430).
文摘This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the impact of wakes on turbine effective wind speed is analyzed,leading to a quantitative method for assessing wake interactions.Based on these interactions,a partitioning method divides the wind farm into smaller,computationally manageable zones.Subsequently,a heuristic control algorithm is developed for yaw optimization within each partition,reducing the overall computational burden associated with multi-turbine optimization.The algorithm’s effectiveness is evaluated through case studies on 11-turbine and 28-turbine wind farms,demonstrating power generation increases of 9.78%and 1.78%,respectively,compared to baseline operation.The primary innovation lies in coupling the higher-fidelity dynamic FLORIDyn wake model with a graph-based partitioning strategy and a computationally efficient heuristic optimization,enabling scalable and accurate yaw control for large wind farms,overcoming limitations associated with simplified models or centralized optimization approaches.
文摘A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.
基金supported by the National Natural Science Foundation of China(51866012)the Major Project of the Natural Science Foundation of Inner Mongolia Autonomous Region(2018ZD08)the Fundamental Research Funds for the Central Universities of Inner Mongolia Autonomous Region(JY20220037).
文摘Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood.This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics(CFD).In the CFD model,the blades are segmented radially to comprehensively analyze the distribution patterns of torque,axial load,and tangential load.The following results are obtained.(i)After applying flapwise vibration,the torque and axial thrust of wind turbines decrease in relation to those of the rigid model,with significantly increased fluctuations.(ii)Flapwise vibration causes the blades to reciprocate along the axial direction,altering the local angle of attack and velocity of the blades relative to the incoming wind flow.This results in the contraction of the torque region from a circular shape to a complex“gear”shape,which is accompanied by evident oscillations.(iii)Compared to the tangential load,the axial load on the blades is more sensitive to flapwise vibration although both exhibit significantly enhanced fluctuations.This study not only reveals the impact of flapwise vibration on wind turbine blade performance,including the reduction of torque and axial thrust and increased operational fluctuations,but also clarifies the radial distribution patterns of blade aerodynamic characteristics,which is of great significance for optimizing wind turbine blade design and reducing fatigue risks.
基金funding for the project,excluding research publication,from the Board of Research in Nuclear Sciences(BRNS)under Grant Number 59/14/05/2019/BRNS.
文摘Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for detecting faces across a wide range of angles from 0°to±90°.We initially selected the most suitable feature vector size by integrating the Dlib,FaceNet(Inception-v2),and“Support Vector Machines(SVM)”+“K-nearest neighbors(KNN)”algorithms.To train and evaluate this feature vector,we used two datasets:the“Labeled Faces in the Wild(LFW)”benchmark data and the“Robust Shape-Based FR System(RSBFRS)”real-time data,which contained face images with varying yaw poses.After selecting the best feature vector,we developed a real-time FR system to handle yaw poses.The proposed FaceNet architecture achieved recognition accuracies of 99.7%and 99.8%for the LFW and RSBFRS datasets,respectively,with 128 feature vector dimensions and minimum Euclidean distance thresholds of 0.06 and 0.12.The FaceNet+SVM and FaceNet+KNN classifiers achieved classification accuracies of 99.26%and 99.44%,respectively.The 128-dimensional embedding vector showed the highest recognition rate among all dimensions.These results demonstrate the effectiveness of our proposed approach in enhancing FR accuracy,particularly in real-world scenarios with varying yaw poses.
文摘Introduction: The WHO recommends mass administration of azithromycin 30 mg/kg to eradicate yaws and 20 mg/kg to eliminate trachoma. We evaluated the effectiveness of azithromycin at 20 and 30 mg/Kg, and the number of cycles of mass administration on the treatment and interruption of yaws transmission in the Mbaïki health district in the Central African Republic. Methods: Following a yaws prevalence survey, azithromycin was administered as a mass treatment in four yaws endemic communities in the Mbaïki health district. Azithromycin 30 mg/kg was administered in one cycle in Kenengué and three cycles spaced three months apart in Bambou. In Kapou and Bangui-Bouchia, azithromycin was administered at a dose of 20 mg/kg in one cycle and three cycles, respectively, spaced three months apart. Before the mass treatment round, confirmed yaw cases were selected and followed for seven months. The primary endpoint was serological cure seven months after the first treatment cycle. Secondary endpoints were clinical cure at four weeks after the first treatment cycle and serological cure at four months after the first treatment cycle. A non-inferiority margin (∆) of 10% was used. Results: A total of 92 participants aged 1 to 90 years, including 52 men, were included in the study. The frequently encountered skin lesions were ulcers (65.22%) and were localized to the lower limbs (59.78%). Clinical cure was not obtained in Bangui-Bouchia and Kapou (∆ = 17.1% and 30.8%). Serological cure at four and seven months was not obtained in Kapou (∆ equal to 17.9% and 13.8% respectively). Conclusion: This study confirms the effectiveness of azithromycin 30 mg/kg in a single dose for the treatment of yaws. However, the study suggests that for yaws eradication programs, two to three cycles of mass administration of azithromycin at 20 or 30 mg/kg spaced three months apart, with therapeutic coverage greater than 90% are essential.
基金supported by National Natural Science Foundation of China (Grant No. 50575120)Ministry of Science and Technology of China (Grant No. 20071850519)
文摘Road friction coefficient is a key factor for the stability control of the vehicle dynamics in the critical conditions. Obviously the vehicle dynamics stability control systems, including the anti-lock brake system(ABS), the traction control system(TCS), and the active yaw control(AYC) system, need the accurate tire and road friction information. However, the simplified method based on the linear tire and vehicle model could not obtain the accurate road friction coefficient for the complicated maneuver of the vehicle. Because the active braking control mode of AYC is different from that of ABS, the road friction coefficient cannot be estimated only with the dynamics states of the tire. With the related dynamics states measured by the sensors of AYC, a comprehensive strategy of the road friction estimation for the active yaw control is brought forward with the sensor fusion technique. Firstly, the variations of the dynamics characteristics of vehicle and tire, and the stability control mode in the steering process are considered, and then the proper road friction estimation methods are brought forward according to the vehicle maneuver process. In the steering maneuver without braking, the comprehensive road friction from the four wheels may be estimated based on the multi-sensor signal fusion method. The estimated values of the road friction reflect the road friction characteristic. When the active brake involved, the road friction coefficient of the braked wheel may be estimated based on the brake pressure and tire forces, the estimated values reflect the road friction between the braked wheel and the road. So the optimal control of the wheel slip rate may be obtained according to the road friction coefficient. The methods proposed in the paper are integrated into the real time controller of AYC, which is matched onto the test vehicle. The ground tests validate the accuracy of the proposed method under the complicated maneuver conditions.
基金the National Natural Science Foundation of China(Grants 51876063 and 51576065)the Science and Technology Project of Huaneng Group(Grant HNKJ18-H33)on research and demonstration application of onshore wind energy efficiency improvement technology.
文摘Horizontal axis wind turbine(HAWT)often works under yaw due to the stochastic variation of wind direction.Yaw also can be used as one of control methods for load reduction and wake redirection of HAWT.Thus,the aerodynamic performance under yaw is very important to the design of HAWT.For further insight into the highly unsteady characteristics aerodynamics of HAWT under yaw,this paper investigates the unsteady variations of the aerodynamic performance of a small wind turbine under static yawed and yawing process with sliding grid method,as well as the there-dimensional effect on the unsteady characteristics,using unsteady Reynolds-averaged Navier-Stokes(URANS)simulations.The simulation results are validated with experimental data and blade element momentum(BEM)results.The comparisons show that the CFD results have better agreement with the experimental data than both BEM results.The wind turbine power decreases according to a cosine law with the increase of yaw angle.The torque under yaw shows lower frequency fluctuations than the non-yawed condition due to velocity component of rotation and the influence of spinner.Dynamic yawing causes larger fluctuate than static yaw,and the reason is analyzed.The aerodynamic fluctuation becomes more prominent in the retreating side than that in the advancing side for dynamic yawing case.Variations of effective angle of attack and aerodynamic forces along the blade span are analyzed.The biggest loading position moves from middle span to outer span with the increase of yaw angle.Three-dimensional stall effect presents load fluctuations at the inner board of blade,and becomes stronger with the increase of yaw angle.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072161,U20A20331)China Postdoctoral Science Foundation(Grant No.2019T120398)+2 种基金State Key Laboratory of Automotive Safety and Energy of China(Grant No.KF2016)Vehicle Measurement Control and Safety Key Laboratory of Sichuan Province(Grant No.QCCK2019-002)Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC 001).
文摘Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model.
文摘Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. The first one relates to a lateral translation and, separately, to a yaw rotation. The second one consists of a combined translational and rotational motion. To determine dynamic yaw stability derivatives, the simulation of an unsteady flow with a bird model showing a harmonic motion is performed. The flow solution for each time step is obtained by solving unsteady Euler equations based on a finite volume approach for a small reduced frequency. Then, an evaluation of unsteady forces and moments for one cycle is conducted using harmonic Fourier analysis. The results of the dynamic yaw stability derivatives for both simulations of the model show a good agreement.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB711200)National Science and Technology Support Program of China(Grant No.2015BAG17B00)National Natural Science Foundation of China(Grant No.51475333)
文摘For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.
基金supported by the National Natural Science Foundation of China(No.11872209)
文摘The experimental data obtained from yaw-roll coupled wind tunnel tests are used for lateral-directional departure prediction,by linearizing the_b model to extract nominal dynamic derivatives at each coupling ratio.The prediction results are compared with those of the existing engineering methods which are based on the conventional aerodynamic derivatives.The comparison shows that the yaw-roll coupling ratio has a great influence on the departure susceptibility.The departure resistance will loss in partial region of the coupling ratio when the angle of attack is higher than a critical value.According to the stable and unstable regions of coupling ratio,a two-segment stability augmentation system with two different feedback gain matrices is obtained by pole-placement method.The two-segment stability augmentation system is used in the simulations of straight and level flight,steady turn,spin recovery and Herbst maneuver.The simulation results are also compared with the applications of a fixed-gain stability augmentation system designed by the conventional aerodynamic derivatives.When the yaw-roll coupling effects are fully considered,the two-segment stability augmentation system is more effective for departure restraint and can provide a better flying quality with less control energy.
基金supported by the National Railway Group Science and Technology Program(Nos.N2020J026 and N2021J028)the Independent Research and Development Project of State Key Laboratory of Traction Power,China(No.2022TPL_Q02)。
文摘High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four types of typical yaw damper layouts for a high-speed locomotive(Bo-Bo)and compares,by using the multi-objective optimization method,the influences of those layouts on the lateral dynamics performance of the locomotive;the linear stability indexes under lowconicity and high-conicity conditions are selected as optimization objectives.Furthermore,the radial basis function-based highdimensional model representation(RBF-HDMR)method is used to conduct a global sensitivity analysis(GSA)between key suspension parameters and the lateral dynamics performance of the locomotive,including the lateral ride comfort on straight tracks under the low-conicity condition,and also the operational safety on curved tracks.It is concluded that the layout of yaw dampers has a considerable impact on low-conicity stability and lateral ride comfort but has little influence on curving performance.There is also an important finding that only when the locomotive adopts the layout with opening outward,the difference in lateral ride comfort between the front and rear ends of the carbody can be eliminated by adjusting the lateral installation angle of the yaw dampers.Finally,force analysis and modal analysis methods are adopted to explain the influence mechanism of yaw damper layouts on the lateral stability and differences in lateral ride comfort between the front and rear ends of the carbody.
基金supported by the National Natural Science Foundation of China (No. 11072111)
文摘Experimental investigation of large amplitude yaw-roll coupled oscillations was conducted in a low-speed wind tunnel using an aircraft configuration model. A special test rig was designed and constructed to provide different coupled motions from low to high angles of attack.A parameter ‘‘coupling ratio" was introduced to indicate the extent of yaw-roll coupling. At each pitch angle, seven coupling ratios were designed to study the yaw-roll coupling effects on the lateraldirectional aerodynamic characteristics systematically. At high angles of attack, the damping characteristics of yawing and rolling moments drastically varied with coupling ratios. In the coupled motions with the rotation taking place about the wind axis, the lateral-directional aerodynamic moments exhibited unsteady characteristics and were different from the ‘‘quasi-steady" results of the rotary balance tests. The calculated results of the traditional aerodynamic derivative method were also compared with the experimental data. At low and very high angles of attack, the aerodynamic derivative method was applicative. However, within a wide range of angles of attack, the calculated results of aerodynamic derivative method were inconsistent with the experimental data, due to the drastic changes of damping characteristics of lateral-directional aerodynamic moments with yaw-roll coupling ratios.
基金Project(11672127)supported by the National Natural Science Foundation of ChinaProject(NHAl3002)supported by the Major Exploration Project of the General Armaments Department of China+1 种基金Project(KYCX17_0240)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,ChinaProjects(NP2016412,NP2018403,NT2018002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.
基金Project(2020YFA0710903) supported by the National Key R&D Program of ChinaProjects(2020zzts111, 2020zzts117)supported by the Graduate Student Independent Innovation Project of Central South University,ChinaProject(202037)supported by Transport Department of Hunan Province Technology Innovation Project,China。
文摘The effects of different yaw angles on the aerodynamic performance of city electric multiple units(EMUs)were investigated in a wind tunnel using a 1:16.8 scaled model.Pressure scanning valve and six-component box-type aerodynamic balance were used to test the pressure distribution and aerodynamic force of the head car respectively from the 1.5-and 3-coach grouping city EMU models.Meanwhile,the effects of the yaw angles on the pressure distribution of the streamlined head as well as the aerodynamic forces of the train were analyzed.The experimental results showed that the pressure coefficient was the smallest at the maximum slope of the main shape-line.The side force coefficient and pressure coefficient along the head car cross-section were most affected by crosswind when the yaw angle was 55°,and replacing a 3-coach grouping with a 1.5-coach grouping had obvious advantages for wind tunnel testing when the yaw angle was within 24.2°.In addition,the relative errors of lift coefficient C_(L),roll moment coefficient C_(Mx),side force coefficient C_(S),and drag coefficient C_(D)between the 1.5-and 3-coach cases were below 5.95%,which all met the requirements of the experimental accuracy.
基金supported by the National Natural Science Foundation of China(Nos.U2141252,11972369 and 52075538)。
文摘For achieving the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a novel yaw effector based on Reverse Dual Synthetic Jets(RDSJ)was proposed without the movement of rudders.Effects on aerodynamic characteristics of a small-sweep FWA and control mechanism were investigated by numerical simulations.Finally,reverse dual synthetic jet actuators were integrated into a real FWA and flight tests were firstly carried out.Numerical results show that RDSJ could make drag coefficient increase and weaken lift coefficient,which generate a yawing moment and a rolling moment in the same direction,realizing control of heading attitudes,but strong coupling with the pitching moment occurs at large angles of attack.For control mechanism,RDSJ could produce two reverse synthetic jets out of phases,improve the reverse pressure gradient and hence form alternate recirculation zones or even early large-area separation,which cause the rise of pressures before exits and the dip of pressures behind exits,achieving improvement of drag and the yawing moment.The results of flight tests support that RDSJ could realize control of heading attitudes without deflections of rudders during the cruise stage and achieve the maximal yaw angular velocity of 10.12(°)/s,verifying the feasibility of this novel yaw effector.
基金supported by the National Natural Science Foundation of China(Grant No.11872118,11627901)。
文摘This study investigates how the debris cloud structure and hazardous fragment distribution vary with attack angle by simulating a circular cylinder projectile hypervelocity impinging on a thin plate using the finite element-smoothed particle hydrodynamics(FE-SPH)adaptive method.Based on the comparison and analysis of the experimental and simulation results,the FE-SPH adaptive method was applied to address the hypervelocity yaw impact problem,and the variation law of the debris cloud structure with the attack angle was obtained.The screening criterion of the hazardous fragment at yaw impact is given by analyzing the debris formation obtained by the FE-SPH adaptive method,and the distribution characteristics of hazardous fragments and their relationship with the attack angle are given.Moreover,the velocity space was used to evaluate the distribution range and damage capability of asymmetric hazardous fragments.The maximum velocity angle was extended from fully symmetrical working conditions to asymmetrical cases to describe the asymmetrical debris cloud distribution range.In this range,the energy density was calculated to quantitatively analyze how much damage hazardous fragments inflict on the rear plate.The results showed that the number of hazardous fragments generated by the case near the 35°attack angle was the largest,the distribution range was the smallest,and the energy density was the largest.These results suggest that in this case,debris cloud generated by the impact had the strongest damage to the rear plate.
基金funded by Youth Program of National Natural Science Foundation of China(52002034)National Key R&D Program of China(2018YFB1600701)+2 种基金Key Research and Development Program of Shaanxi(2020ZDLGY16-01,2019ZDLGY15-02)Natural Science Basic Research Program of Shaanxi(2020JQ-381)Fundamental Research Funds for the Central Universities,CHD(300102220113).
文摘Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is constructed based on model predictive control.Aiming at minimizing the utilization rate of tire adhesion and constrained by the working characteristics of motor system and brake system,a quadratic programming active set was designed to optimize the distribution of additional yaw moments.The road surface adhesion coefficient has a great impact on the reliability of direct yaw moment control,for which joint observer of vehicle state parameters and road surface parameters is designed by using unscented Kalman filter algorithm,which correlates vehicle state observer and road surface parameter observer to form closed-loop feedback correction.The results show that compared to the“feedforward+feedback”control,the vehicle’s error of yaw rate and sideslip angle by the model predictive control is smaller,which can improve the vehicle stability effectively.In addition,according to the results of the docking road simulation test,the joint observer of vehicle state and road surface parameters can improve the adaptability of the vehicle stability controller to the road conditions with variable adhesion coefficients.
文摘A genetic algorithm is proposed to optimize the yaw control system used for the stable and efficient operation of turbines in wind power plants.In particular,the factors that produce yaw static deviation are analyzed.Then,the sought optimization method for the yaw static deviation of the wind turbine is implemented by using a lidar wind meter in the engine room in order to solve the low accuracy problem caused by yaw static deviation.It is shown that fuzzy control can overcome problematic factors such as the randomness of wind direction and track the change of wind direction accurately.Power control implementation is simple,as only the voltage and current of the generator need to be measured.