This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the...This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the structure of single ended inverter with two switches, and takes IGBTs as power switches. The working frequency of the inverter is set at 20 kHz. The control circuit takes PWM circuit as center, and uses single chip computer to complete the manage functions such as the control of working sequence, setting and changing of the welding parameters, sensing of the welding states and communication with outside computer etc. The dynamic reacting time of the whole power is 1 ms, the range of the output current is 5~250 A, the precision of the output current reaches to 1 A. The power strikes arc by contacting workpiece under 5 A, and have convenient interface with system computer. All above shows this power source is one with high performance.展开更多
A valid image-processing algorithm of weld pool surface reconstruction according to an input image of weld pool based on shape from shading (SFS) in computer vision is presented. The weld pool surface information is...A valid image-processing algorithm of weld pool surface reconstruction according to an input image of weld pool based on shape from shading (SFS) in computer vision is presented. The weld pool surface information is related to the backside weld width, which is crucial to the quality of weld joint. The image of weld pool is recorded with an optical sensing method. Firstly, the reflectance map model, which specifies the imaging process, is estimated. Then, the algorithm of weld pool surface reconstruction based on SFS is implemented by iteration scheme and speeded by hierarchical structure. The results indicate the accuracy and effectiveness of the approach.展开更多
Based on the three-dimensional model of TIG weld pool established,the effect of the arc force on liquid surface was investigated.The simulation was carried out with finite elements software Surface Evolver.The influen...Based on the three-dimensional model of TIG weld pool established,the effect of the arc force on liquid surface was investigated.The simulation was carried out with finite elements software Surface Evolver.The influence of the arc force on the weld pool shape was also studied.According to the results,the variation of the weld shape and the parameters with different arc force strength was obtained.Compared with the back weld pool,the top weld pool was influenced more strongly by the arc force.These results provide an effective basis for further study of the TIG weld pool.展开更多
Based on the extended application of COMSOL multiphysics, a novel dual heat source model for pulsed laser-gas tungsten arc (GTA) hybrid welding was established. This model successfully solved the problem of simulati...Based on the extended application of COMSOL multiphysics, a novel dual heat source model for pulsed laser-gas tungsten arc (GTA) hybrid welding was established. This model successfully solved the problem of simulation inaccuracy caused by energy superposition effect between laser and arc due to their different physical characteristics. Numerical simulation for pulsed laser-GTA hybrid welding of magnesium alloy process was conducted, and the simulation indicated good agree- ments with the measured thermal cycle curve and the shape of weld beads. Effects of pulse laser parameters (laser-excited current, pulse duration, and pulse frequency) on the temperature field and weld pool morphology were investigated. The experimental and simulation results suggest that when the laser pulse energy keeps constant, welding efficiency of the hybrid heat source is increased by increasing laser current or decreasing pulse duration due to the increased ratio of the weld bead depth to width. With large laser currents, severe spatters tend to occur. For optimized welding process, the laser current should be controlled in the range of 150-175 A, the pulse duration should be longer than 1 ms, and the pulse frequency should be equal to or slightly greater than 20 Hz.展开更多
文摘This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the structure of single ended inverter with two switches, and takes IGBTs as power switches. The working frequency of the inverter is set at 20 kHz. The control circuit takes PWM circuit as center, and uses single chip computer to complete the manage functions such as the control of working sequence, setting and changing of the welding parameters, sensing of the welding states and communication with outside computer etc. The dynamic reacting time of the whole power is 1 ms, the range of the output current is 5~250 A, the precision of the output current reaches to 1 A. The power strikes arc by contacting workpiece under 5 A, and have convenient interface with system computer. All above shows this power source is one with high performance.
基金This project is supported by National Natural Science Foundation of China(No.50575144).
文摘A valid image-processing algorithm of weld pool surface reconstruction according to an input image of weld pool based on shape from shading (SFS) in computer vision is presented. The weld pool surface information is related to the backside weld width, which is crucial to the quality of weld joint. The image of weld pool is recorded with an optical sensing method. Firstly, the reflectance map model, which specifies the imaging process, is estimated. Then, the algorithm of weld pool surface reconstruction based on SFS is implemented by iteration scheme and speeded by hierarchical structure. The results indicate the accuracy and effectiveness of the approach.
文摘Based on the three-dimensional model of TIG weld pool established,the effect of the arc force on liquid surface was investigated.The simulation was carried out with finite elements software Surface Evolver.The influence of the arc force on the weld pool shape was also studied.According to the results,the variation of the weld shape and the parameters with different arc force strength was obtained.Compared with the back weld pool,the top weld pool was influenced more strongly by the arc force.These results provide an effective basis for further study of the TIG weld pool.
基金This work was supported by the Natural Science Foundation of Liaoning Province of China (Grant Nos. 201602391 and 20170540460).
文摘Based on the extended application of COMSOL multiphysics, a novel dual heat source model for pulsed laser-gas tungsten arc (GTA) hybrid welding was established. This model successfully solved the problem of simulation inaccuracy caused by energy superposition effect between laser and arc due to their different physical characteristics. Numerical simulation for pulsed laser-GTA hybrid welding of magnesium alloy process was conducted, and the simulation indicated good agree- ments with the measured thermal cycle curve and the shape of weld beads. Effects of pulse laser parameters (laser-excited current, pulse duration, and pulse frequency) on the temperature field and weld pool morphology were investigated. The experimental and simulation results suggest that when the laser pulse energy keeps constant, welding efficiency of the hybrid heat source is increased by increasing laser current or decreasing pulse duration due to the increased ratio of the weld bead depth to width. With large laser currents, severe spatters tend to occur. For optimized welding process, the laser current should be controlled in the range of 150-175 A, the pulse duration should be longer than 1 ms, and the pulse frequency should be equal to or slightly greater than 20 Hz.