Fluidized solidified soil(FSS)is an innovative backfill material that offers benefits such as easy pumping and straightforward construction.This study examined how varying the water-soil ratio and the curing agent dos...Fluidized solidified soil(FSS)is an innovative backfill material that offers benefits such as easy pumping and straightforward construction.This study examined how varying the water-soil ratio and the curing agent dosage affect the properties and microstructure of FSS.The strength development mechanism was investigated when composite solidification agents were used.The findings show that both the water-solid ratio and the curing agent dosage can affect the microstructure of FSS,thereby affecting its performance.When the water-solid ratio increases from 0.52 to 0.56,the unconfined compressive strength(UCS)and flexural strength of the FSS decrease by 34.1% and 39.3% after 28 d.Conversely,the curing agent dosage increasing from 10% to 30% will increase both UCS and flexural strength by 11.2 times and 11.1 times.As the curing age increases,the number of cracks at failure point in the FSS will increase and lead to a more complete failure.Numerous needle-like AFt,C-S-H gel,and C-(A)-S-H gel create a three-dimensional network by adhering to soil particles.展开更多
基金Funded by the China Construction Shares Technology Research and Development Project(No.CSCEC-2023-Z-07)CSCEC Strait Major Scientific and Technological Project(No.ZJHX2023C001)+1 种基金Engineering Research Center of Prevention and Control of Geological Disasters in the Mountainous Areas of Northern Fujian,Fujian Province University,China(No.WYERC2024-3)Science s of Fujian Province(No.2023J01476)。
文摘Fluidized solidified soil(FSS)is an innovative backfill material that offers benefits such as easy pumping and straightforward construction.This study examined how varying the water-soil ratio and the curing agent dosage affect the properties and microstructure of FSS.The strength development mechanism was investigated when composite solidification agents were used.The findings show that both the water-solid ratio and the curing agent dosage can affect the microstructure of FSS,thereby affecting its performance.When the water-solid ratio increases from 0.52 to 0.56,the unconfined compressive strength(UCS)and flexural strength of the FSS decrease by 34.1% and 39.3% after 28 d.Conversely,the curing agent dosage increasing from 10% to 30% will increase both UCS and flexural strength by 11.2 times and 11.1 times.As the curing age increases,the number of cracks at failure point in the FSS will increase and lead to a more complete failure.Numerous needle-like AFt,C-S-H gel,and C-(A)-S-H gel create a three-dimensional network by adhering to soil particles.