8wt%WO3/SiO2 metathesis (disproportionation) catalysts with different pore structures were prepared by the incipient-wetness-impregnation method. The as-synthesized catalysts were characterized by N2 adsorpfion-deso...8wt%WO3/SiO2 metathesis (disproportionation) catalysts with different pore structures were prepared by the incipient-wetness-impregnation method. The as-synthesized catalysts were characterized by N2 adsorpfion-desorption, scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy (DRS) and scanning transmission electron microscopy-high-angle annular dark field (STEM HAADF). The results of STEM HAADF showed that WO3 species were not uniformly distributed on the SiO2 support. The experimental results of 8wt%WO3/SiO2 performance in ethene/decene metathesis revealed that the catalytic effect of 8wt%WO3/SiO2 catalyst and coke formation over it were closely related to the support pore structure: The 8wt%WO3/SiO2 catalyst with a more complicated pore structure showed better catalytic performance but the coke deposition rate was also faster.展开更多
A series of catalysts were prepared by doping different loadings of CeO2 over TiO2-SiO2-WO3 and used for the selective catalytic reduction of NOx by NH3. The experimental results showed that the selective catalytic re...A series of catalysts were prepared by doping different loadings of CeO2 over TiO2-SiO2-WO3 and used for the selective catalytic reduction of NOx by NH3. The experimental results showed that the selective catalytic reduction(SCR) performance and SO2-resistant ability of TiO2-SiO2-WO3 were greatly enhanced by the introduction of cerium. The catalyst containing 10% CeO2 showed the highest NO conversion in a wide temperature range and good N2 selectivity with broad operation temperature window at the gas hourly space velocity(GHSV) of 30000 h–1, which was a very promising catalyst for NOx abatement from diesel engine exhaust. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDS), N2 adsorption-desorption(BET) and X-ray photoelectron spectroscopy(XPS). The characterization results showed that the bigger pore radius, higher surface atomic concentration and dispersion of Ce and the abundant adsorbed oxygen on the surface of catalyst contributed to the best NH3-SCR performance of CeO2/TiO2-SiO2-WO3 catalyst containing 10% CeO2.展开更多
文摘8wt%WO3/SiO2 metathesis (disproportionation) catalysts with different pore structures were prepared by the incipient-wetness-impregnation method. The as-synthesized catalysts were characterized by N2 adsorpfion-desorption, scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy (DRS) and scanning transmission electron microscopy-high-angle annular dark field (STEM HAADF). The results of STEM HAADF showed that WO3 species were not uniformly distributed on the SiO2 support. The experimental results of 8wt%WO3/SiO2 performance in ethene/decene metathesis revealed that the catalytic effect of 8wt%WO3/SiO2 catalyst and coke formation over it were closely related to the support pore structure: The 8wt%WO3/SiO2 catalyst with a more complicated pore structure showed better catalytic performance but the coke deposition rate was also faster.
基金supported by the National Natural Science Foundation of China(21173153)the National High Technology Research and Development Program of China(863 project)(2013AA065304)
文摘A series of catalysts were prepared by doping different loadings of CeO2 over TiO2-SiO2-WO3 and used for the selective catalytic reduction of NOx by NH3. The experimental results showed that the selective catalytic reduction(SCR) performance and SO2-resistant ability of TiO2-SiO2-WO3 were greatly enhanced by the introduction of cerium. The catalyst containing 10% CeO2 showed the highest NO conversion in a wide temperature range and good N2 selectivity with broad operation temperature window at the gas hourly space velocity(GHSV) of 30000 h–1, which was a very promising catalyst for NOx abatement from diesel engine exhaust. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDS), N2 adsorption-desorption(BET) and X-ray photoelectron spectroscopy(XPS). The characterization results showed that the bigger pore radius, higher surface atomic concentration and dispersion of Ce and the abundant adsorbed oxygen on the surface of catalyst contributed to the best NH3-SCR performance of CeO2/TiO2-SiO2-WO3 catalyst containing 10% CeO2.