Flow cytometry(FCM),characterized by its simplicity,rapid processing,multiparameter analysis,and high sen-sitivity,is widely used in the diagnosis,treatment,and prognosis of hematological malignancies.FCM testing of t...Flow cytometry(FCM),characterized by its simplicity,rapid processing,multiparameter analysis,and high sen-sitivity,is widely used in the diagnosis,treatment,and prognosis of hematological malignancies.FCM testing of tissue samples not only aids in diagnosing and classifying hematological cancers,but also enables the detection of solid tumors.Its ability to detect numerous marker parameters from small samples is particularly useful when dealing with limited cell quantities,such as in fine-needle biopsy samples.This attribute not only addresses the challenge posed by small sample sizes,but also boosts the sensitivity of tumor cell detection.The significance of FCM in clinical and pathological applications continues to grow.To standardize the use of FCM in detecting hematological malignant cells in tissue samples and to improve quality control during the detection process,experts from the Cell Analysis Professional Committee of the Chinese Society of Biotechnology jointly drafted and agreed upon this consensus.This consensus was formulated based on current literature and clinical practices of all experts across clinical,laboratory,and pathological fields in China.It outlines a comprehensive workflow of FCM-based assay for the detection of hematological malignancies in tissue samples,including report content,interpretation,quality control,and key considerations.Additionally,it provides recommendations on antibody panel designs and analytical approaches to enhancing FCM tests,particularly in cases with limited sample sizes.展开更多
The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among ...The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among trees.Therefore,an in-depth understanding of the coupling effects of these factors is important for designing sap flow measurement methods and performing accurate assessments of stand scale transpiration.This study is based on observations of sap flux density(SF_(d))of nine sample trees with different Hegyi’s competition indices(HCIs),soil moisture,and meteorological conditions in a pure plantation of Larix gmelinii var.principis-rupprechtii during the 2021 growing season(May to September).A multifactorial model of sap flow was developed and possible errors in the stand scale sap flow estimates associated with sample sizes were determined using model-based predictions of sap flow.Temporal variations are controlled by vapour pressure deficit(VPD),solar radiation(R),and soil moisture,and these relationships can be described by polynomial or saturated exponential functions.Spatial(individual)differences were influenced by the HCI,as shown by the decaying power function.A simple SF_(d)model at the individual tree level was developed to describe the synergistic influences of VPD,R,soil moisture,and HCI.The coefficient of variations(CV)of the sap flow estimates gradually stabilized when the sample size was>10;at least six sample trees were needed if the CV was within 10%.This study improves understanding of the mechanisms of spatiotemporal variations in sap flow at the individual tree level and provides a new methodology for determining the optimal sample size for sap flow measurements.展开更多
This study presents a calibration process of three-dimensional particle flow code(PFC3D)simulation of intact and fissured granite samples.First,laboratory stressestrain response from triaxial testing of intact and fis...This study presents a calibration process of three-dimensional particle flow code(PFC3D)simulation of intact and fissured granite samples.First,laboratory stressestrain response from triaxial testing of intact and fissured granite samples is recalled.Then,PFC3D is introduced,with focus on the bonded particle models(BPM).After that,we present previous studies where intact rock is simulated by means of flatjoint approaches,and how improved accuracy was gained with the help of parametric studies.Then,models of the pre-fissured rock specimens were generated,including modeled fissures in the form of“smooth joint”type contacts.Finally,triaxial testing simulations of 1 t 2 and 2 t 3 jointed rock specimens were performed.Results show that both elastic behavior and the peak strength levels are closely matched,without any additional fine tuning of micro-mechanical parameters.Concerning the postfailure behavior,models reproduce the trends of decreasing dilation with increasing confinement and plasticity.However,the dilation values simulated are larger than those observed in practice.This is attributed to the difficulty in modeling some phenomena of fissured rock behaviors,such as rock piece corner crushing with dust production and interactions between newly formed shear bands or axial splitting cracks with pre-existing joints.展开更多
A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is compos...A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is composed of a gear pump, a reversing valve, a relief valve and other components. By using the steady penetration method, the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured, the grain diameters of the coal samples were selected as 2.5-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, 20-25 mm and 2.5-25 ram, respectively. After measuring the permeability under each porosity, the overfall pressure of the relief valve continuously increased until the coal sample was broken down. In this way, the flow type of liquid inside the broken coal samples changed from seepage to pipe flow. The correlation between breakdown pressure gradient (BPG) and porosity was analyzed, and the BPG was compared with the pressure gradient when seepage instability occurred. The results show that, ①the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ②the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity, and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient. The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.展开更多
Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at hig...Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at high levels in tobacco products and in both mainstream and side-stream smoke. Our laboratory monitors six urinary VNAs—N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine (NMOR)—using isotope dilution GC-MS/ MS (QQQ) for large population studies such as the National Health and Nutrition Examination Survey (NHANES). In this paper, we report for the first time a new automated sample preparation method to more efficiently quantitate these VNAs. Automation is done using Hamilton STAR<sup>TM</sup> and Caliper Staccato<sup>TM</sup> workstations. This new automated method reduces sample preparation time from 4 hours to 2.5 hours while maintaining precision (inter-run CV < 10%) and accuracy (85% - 111%). More importantly this method increases sample throughput while maintaining a low limit of detection (<10 pg/mL) for all analytes. A streamlined sample data flow was created in parallel to the automated method, in which samples can be tracked from receiving to final LIMs output with minimal human intervention, further minimizing human error in the sample preparation process. This new automated method and the sample data flow are currently applied in bio-monitoring of VNAs in the US non-institutionalized population NHANES 2013-2014 cycle.展开更多
Porcine epidemic diarrhea virus(PEDV),as the main causative pathogen of viral diarrhea in pigs,has been reported to result in high morbidity and mortality in neonatal piglets and cause significant economic losses to t...Porcine epidemic diarrhea virus(PEDV),as the main causative pathogen of viral diarrhea in pigs,has been reported to result in high morbidity and mortality in neonatal piglets and cause significant economic losses to the swine industry.Rapid diagnosis methods are essential for preventing outbreaks and transmission of this disease.In this study,a paper-based lateral flow immunoassay for the rapid diagnosis of PEDV in swine fecal samples was developed using stable color-rich latex beads as the label.Under optimal conditions,the newly developed latex bead-based lateral flow immunoassay(LBs-LFIA)attained a limit of detection(LOD)as low as 10^(3.60) TCID_(50)/mL and no cross-reactivity with other related swine viruses.To solve swine feces impurity interference,by adding a filtration unit design of LFIA without an additional pretreatment procedure,the LBs-LFIA gave good agreement(92.59%)with RT-PCR results in the analysis of clinical swine fecal samples{n=108),which was more accurate than previously reported colloidal gold LFIA(74.07%)and fluorescent LFIA(86.67%).Moreover,LBs-LFIA showed sufficient accuracy(coefficient of variance[CV]<15%)and stable(room temperature storage life>56 days)performance for PEDV detection,which is promising for on-site analysis and user-driven testing in pig production system.展开更多
The quality of debris flow susceptibility mapping varies with sampling strategies. This paper aims at comparing three sampling strategies and determining the optimal one to sample the debris flow watersheds. The three...The quality of debris flow susceptibility mapping varies with sampling strategies. This paper aims at comparing three sampling strategies and determining the optimal one to sample the debris flow watersheds. The three sampling strategies studied were the centroid of the scarp area(COSA), the centroid of the flowing area(COFA), and the centroid of the accumulation area(COAA) of debris flow watersheds. An inventory consisting of 150 debris flow watersheds and 12 conditioning factors were prepared for research. Firstly, the information gain ratio(IGR) method was used to analyze the predictive ability of the conditioning factors. Subsequently, 12 conditioning factors were involved in the modeling of artificial neural network(ANN), random forest(RF) and support vector machine(SVM). Then, the receiver operating characteristic curves(ROC) and the area under curves(AUC) were used to evaluate the model performance. Finally, a scoring system was used to score the quality of the debris flow susceptibility maps. Samples obtained from the accumulation area have the strongest predictive ability and can make the models achieve the best performance. The AUC values corresponding to the best model performance on the validation dataset were 0.861, 0.804 and 0.856 for SVM, ANN and RF respectively. The sampling strategy of the centroid of the scarp area is optimal with the highest quality of debris flow susceptibility maps having scores of 373470, 393241 and 362485 for SVM, ANN and RF respectively.展开更多
Anomaly detection is now very important in the network because the increasing use of the internet and security of a network or user is a main concern of any network administrator. As the use of the internet increases,...Anomaly detection is now very important in the network because the increasing use of the internet and security of a network or user is a main concern of any network administrator. As the use of the internet increases, so the chances of having a threat or attack in the network are also increasing day by day and traffic in the network is also increasing. It is very difficult to analyse all the traffic data in network for finding the anomaly in the network and sampling provides a way to analyse the anomalies in network with less traffic data. In this paper, we propose a port scan detection approach called CPST uses connection status and pattern of the connections to detect a particular source is scanner or benign host. We also show that this approach works efficiently under different sampling methods.展开更多
The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pe...The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.展开更多
<strong><em>Background: </em></strong>The appropriate time to initiate antiretroviral therapy (ART) in HIV/AIDS patients is determined by measurement of CD4+/CD8+ T cell count. The CD4/CD8+ T c...<strong><em>Background: </em></strong>The appropriate time to initiate antiretroviral therapy (ART) in HIV/AIDS patients is determined by measurement of CD4+/CD8+ T cell count. The CD4/CD8+ T cell count is also useful, together with viral load, in monitoring disease progression and effectiveness treatment regimens. Several factors may contribute to sample rejection during the CD4+/CD8+ T cells count, resulting in negative effects on patient management. <strong> <em>Objective: </em></strong>Evaluate the causes for CD4+CD8+ T cell count sample rejection at the Kenyatta National Hospital Comprehensive Care Center Laboratory. <strong><em>Method:</em></strong> A retrospective cross-sectional study was conducted between 2018 and 2020. Data was obtained from the “rejected samples” for Partec<sup>R</sup> FlowCyp flow cytometry file. Designed data collection sheet was used for data capture. A total of 3972 samples were submitted for CD4+/CD8+ T cell count during the study period. Causes for sample rejection were numbered 1 to 12, each representing a reason for sample rejection. Number 1 was sub-categorized into clotted, hemolyzed, short-draw and lipemic. Data was analyzed using excel, and presented using tables, graphs and pie charts. Approval to conduct the study was obtained from KNH/UoN ERC. <strong> <em>Results: </em></strong>In the study period, 81/3972 (2.0%) samples were rejected. Samples submitted more than 48 hours after collection were mostly rejected. Other factors included improper collection technique, delayed testing, patient identification error and incorrect use of vacutainer. A combination of clotted samples, specimen submission more than 48 hours caused the most frequent sample rejection, followed with combination of specimen submission more than 48 hours, delayed testing and delayed specimen processing. Together, clotted samples, incorrect vacutainer and poor specimen label caused the least sample rejection. <strong><em>Conclusion:</em></strong> Sample rejection rate for CD4/CD8+ T cell count was relatively low, and multiple factors contributed to rejection. However, improved quality assurance will enable more benefit to patients who seek this test in the laboratory.展开更多
An improved Reduced-Order Model(ROM)is proposed based on a flow-solution preprocessing operation and a fast sampling strategy to efficiently and accurately predict ionized hypersonic flows.This ROM is generated in low...An improved Reduced-Order Model(ROM)is proposed based on a flow-solution preprocessing operation and a fast sampling strategy to efficiently and accurately predict ionized hypersonic flows.This ROM is generated in low-dimensional space by performing the Proper Orthogonal Decomposition(POD)on snapshots and is coupled with the Radial Basis Function(RBF)to achieve fast prediction speed.However,due to the disparate scales in the ionized flow field,the conventional ROM usually generates spurious negative errors.Here,this issue is addressed by performing flow-solution preprocessing in logarithmic space to improve the conventional ROM.Then,extra orthogonal polynomials are introduced in the RBF interpolation to achieve additional improvement of the prediction accuracy.In addition,to construct high-efficiency snapshots,a trajectory-constrained adaptive sampling strategy based on convex hull optimization is developed.To evaluate the performance of the proposed fast prediction method,two hypersonic vehicles with classic configurations,i.e.a wave-rider and a reentry capsule,are used to validate the proposed method.Both two cases show that the proposed fast prediction method has high accuracy near the vehicle surface and the free-stream region where the flow field is smooth.Compared with the conventional ROM prediction,the prediction results are significantly improved by the proposed method around the discontinuities,e.g.the shock wave and the ionized layer.As a result,the proposed fast prediction method reduces the error of the conventional ROM by at least 45%,with a speedup of approximately 2.0×105compared to the Computational Fluid Dynamic(CFD)simulations.These test cases demonstrate that the method developed here is efficient and accurate for predicting ionized hypersonic flows.展开更多
Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism...Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism and conditions of unwanted ignition inside charged propellant under accident stimulus.Secondly, evaluates the risk of a shell crevice in a solid rocket motor(SRM) under a falling or overturning scene. In the present study, an innovative visual crevice extrusion experiment is designed using a dropweight apparatus. The dynamic responses of NEPE propellant during extrusion loading, including compaction and compression, rapid shear flow into the crevice, stress concentration, and ignition reaction, have been firstly observed using a high-performance high-speed camera. The ignition reaction is observed in the triangular region of the NEPE propellant sample above the crevice when the drop weight velocity was 1.90 m/s. Based on the user material subroutine interface UMAT provided by finite element software LS-DYNA, a viscoelastic-plastic model and dual ignition criterion related to plastic shear dissipation are developed and applied to the local ignition response analysis under crevice extrusion conditions. The stress concentration occurs in the crevice location of the propellant sample, the shear stress is relatively large, the effective plastic work is relatively large, and the ignition reaction is easy to occur. When the sample thickness decreases from 5 mm to 2.5 mm, the shear stress increases from 22.3 MPa to 28.6 MPa, the critical value of effective plastic work required for ignition is shortened from 1280 μs to 730 μs, and the triangular area is easily triggering an ignition reaction. The propellant sample with a small thickness is more likely to stress concentration, resulting in large shear stress and effective work, triggering an ignition reaction.展开更多
视频帧之间不仅具有空间相关性,还存在时间相关性。根据低分辨率视频重建高分辨率视频时,可以利用相邻的多帧信息对齐到目标帧,以指导当前帧的恢复。相邻帧之间的对齐一般采用光流指导的可变形卷积进行显式对齐,这种方法克服了可变形卷...视频帧之间不仅具有空间相关性,还存在时间相关性。根据低分辨率视频重建高分辨率视频时,可以利用相邻的多帧信息对齐到目标帧,以指导当前帧的恢复。相邻帧之间的对齐一般采用光流指导的可变形卷积进行显式对齐,这种方法克服了可变形卷积的不稳定性,但会影响帧中高频信息的恢复,降低对齐信息的准确性并放大伪影。为解决上述问题,提出了一种基于隐式对齐的视频超分模型IAVSR(Implicit Alignment Video Super-Resolution)。IAVSR通过偏移量和原始值将光流编码到特定像素位置,以此计算光流预对齐的信息而不是利用插值函数插值获得,随后利用光流指导的可变形卷积对计算后的预对齐特征进行重对齐,以帮助高频信息的恢复。在双向传播中利用前两帧传播的信息进行对齐来指导当前帧的恢复,并引入残差网络结构,在提高对齐信息准确性的同时避免引入过多的参数。在REDS4公开数据集上的实验结果表明,IAVSR的峰值信噪比(PSNR)比基准模型提高了0.6 dB,且模型训练时的收敛速度提升了20%。展开更多
基金supported by grants from the National Natural Science Foundation of China(grant numbers:82370195,82270203,81770211)the Fundamental Research Funds for the Central Univer-sities(grant number:2022CDJYGRH-001)Chongqing Technology Innovation and Application Development Special Key Project(grant number:CSTB2024TIAD-KPX0031).
文摘Flow cytometry(FCM),characterized by its simplicity,rapid processing,multiparameter analysis,and high sen-sitivity,is widely used in the diagnosis,treatment,and prognosis of hematological malignancies.FCM testing of tissue samples not only aids in diagnosing and classifying hematological cancers,but also enables the detection of solid tumors.Its ability to detect numerous marker parameters from small samples is particularly useful when dealing with limited cell quantities,such as in fine-needle biopsy samples.This attribute not only addresses the challenge posed by small sample sizes,but also boosts the sensitivity of tumor cell detection.The significance of FCM in clinical and pathological applications continues to grow.To standardize the use of FCM in detecting hematological malignant cells in tissue samples and to improve quality control during the detection process,experts from the Cell Analysis Professional Committee of the Chinese Society of Biotechnology jointly drafted and agreed upon this consensus.This consensus was formulated based on current literature and clinical practices of all experts across clinical,laboratory,and pathological fields in China.It outlines a comprehensive workflow of FCM-based assay for the detection of hematological malignancies in tissue samples,including report content,interpretation,quality control,and key considerations.Additionally,it provides recommendations on antibody panel designs and analytical approaches to enhancing FCM tests,particularly in cases with limited sample sizes.
基金supported by the Fundamental Research Funds of the Chinese Academy of Forestry(CAFYBB2020QB004)the National Natural Science Foundation of China(41971038,32171559,U20A2085,and U21A2005).
文摘The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among trees.Therefore,an in-depth understanding of the coupling effects of these factors is important for designing sap flow measurement methods and performing accurate assessments of stand scale transpiration.This study is based on observations of sap flux density(SF_(d))of nine sample trees with different Hegyi’s competition indices(HCIs),soil moisture,and meteorological conditions in a pure plantation of Larix gmelinii var.principis-rupprechtii during the 2021 growing season(May to September).A multifactorial model of sap flow was developed and possible errors in the stand scale sap flow estimates associated with sample sizes were determined using model-based predictions of sap flow.Temporal variations are controlled by vapour pressure deficit(VPD),solar radiation(R),and soil moisture,and these relationships can be described by polynomial or saturated exponential functions.Spatial(individual)differences were influenced by the HCI,as shown by the decaying power function.A simple SF_(d)model at the individual tree level was developed to describe the synergistic influences of VPD,R,soil moisture,and HCI.The coefficient of variations(CV)of the sap flow estimates gradually stabilized when the sample size was>10;at least six sample trees were needed if the CV was within 10%.This study improves understanding of the mechanisms of spatiotemporal variations in sap flow at the individual tree level and provides a new methodology for determining the optimal sample size for sap flow measurements.
基金The University of Vigo is acknowledged for financing part of the first author’s PhD studiesthe Spanish Ministry of Economy and Competitiveness for funding of the project‘Deepening on the behaviour of rock masses:Scale effects on the stressestrain response of fissured rock samples with particular emphasis on post-failure’,awarded under Contract Reference No.RTI2018-093563-B-I00partially financed by means of European Regional Development Funds from the European Union(EU)。
文摘This study presents a calibration process of three-dimensional particle flow code(PFC3D)simulation of intact and fissured granite samples.First,laboratory stressestrain response from triaxial testing of intact and fissured granite samples is recalled.Then,PFC3D is introduced,with focus on the bonded particle models(BPM).After that,we present previous studies where intact rock is simulated by means of flatjoint approaches,and how improved accuracy was gained with the help of parametric studies.Then,models of the pre-fissured rock specimens were generated,including modeled fissures in the form of“smooth joint”type contacts.Finally,triaxial testing simulations of 1 t 2 and 2 t 3 jointed rock specimens were performed.Results show that both elastic behavior and the peak strength levels are closely matched,without any additional fine tuning of micro-mechanical parameters.Concerning the postfailure behavior,models reproduce the trends of decreasing dilation with increasing confinement and plasticity.However,the dilation values simulated are larger than those observed in practice.This is attributed to the difficulty in modeling some phenomena of fissured rock behaviors,such as rock piece corner crushing with dust production and interactions between newly formed shear bands or axial splitting cracks with pre-existing joints.
基金Supported by the National Natural Science Foundation of China (50974107) the University Graduate Research and Innovation Project in Jiangsu Province (CXZZI2_0924)+1 种基金 the Applied Basic Research Project of Yancheng Institute of Technology (XKR2010010) the State Key Laboratory Open Foundation of Deep Geomechanics and Underground Engineering of China University of Mining and Technology (SKLGDUEK1014)
文摘A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is composed of a gear pump, a reversing valve, a relief valve and other components. By using the steady penetration method, the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured, the grain diameters of the coal samples were selected as 2.5-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, 20-25 mm and 2.5-25 ram, respectively. After measuring the permeability under each porosity, the overfall pressure of the relief valve continuously increased until the coal sample was broken down. In this way, the flow type of liquid inside the broken coal samples changed from seepage to pipe flow. The correlation between breakdown pressure gradient (BPG) and porosity was analyzed, and the BPG was compared with the pressure gradient when seepage instability occurred. The results show that, ①the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ②the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity, and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient. The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.
文摘Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at high levels in tobacco products and in both mainstream and side-stream smoke. Our laboratory monitors six urinary VNAs—N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine (NMOR)—using isotope dilution GC-MS/ MS (QQQ) for large population studies such as the National Health and Nutrition Examination Survey (NHANES). In this paper, we report for the first time a new automated sample preparation method to more efficiently quantitate these VNAs. Automation is done using Hamilton STAR<sup>TM</sup> and Caliper Staccato<sup>TM</sup> workstations. This new automated method reduces sample preparation time from 4 hours to 2.5 hours while maintaining precision (inter-run CV < 10%) and accuracy (85% - 111%). More importantly this method increases sample throughput while maintaining a low limit of detection (<10 pg/mL) for all analytes. A streamlined sample data flow was created in parallel to the automated method, in which samples can be tracked from receiving to final LIMs output with minimal human intervention, further minimizing human error in the sample preparation process. This new automated method and the sample data flow are currently applied in bio-monitoring of VNAs in the US non-institutionalized population NHANES 2013-2014 cycle.
基金This work was supported by the National Key Research and Development Program of China(2016YFD0500600)the Fund for Guangdong Enterprise Science and Technology Commissioner(GDKTP2020032200).
文摘Porcine epidemic diarrhea virus(PEDV),as the main causative pathogen of viral diarrhea in pigs,has been reported to result in high morbidity and mortality in neonatal piglets and cause significant economic losses to the swine industry.Rapid diagnosis methods are essential for preventing outbreaks and transmission of this disease.In this study,a paper-based lateral flow immunoassay for the rapid diagnosis of PEDV in swine fecal samples was developed using stable color-rich latex beads as the label.Under optimal conditions,the newly developed latex bead-based lateral flow immunoassay(LBs-LFIA)attained a limit of detection(LOD)as low as 10^(3.60) TCID_(50)/mL and no cross-reactivity with other related swine viruses.To solve swine feces impurity interference,by adding a filtration unit design of LFIA without an additional pretreatment procedure,the LBs-LFIA gave good agreement(92.59%)with RT-PCR results in the analysis of clinical swine fecal samples{n=108),which was more accurate than previously reported colloidal gold LFIA(74.07%)and fluorescent LFIA(86.67%).Moreover,LBs-LFIA showed sufficient accuracy(coefficient of variance[CV]<15%)and stable(room temperature storage life>56 days)performance for PEDV detection,which is promising for on-site analysis and user-driven testing in pig production system.
基金This work was supported by National Natural Science Foundation of China(Grant no.41972267 and no.41572257)Graduate Innovation Fund of Jilin University(Grant no.101832020CX232)。
文摘The quality of debris flow susceptibility mapping varies with sampling strategies. This paper aims at comparing three sampling strategies and determining the optimal one to sample the debris flow watersheds. The three sampling strategies studied were the centroid of the scarp area(COSA), the centroid of the flowing area(COFA), and the centroid of the accumulation area(COAA) of debris flow watersheds. An inventory consisting of 150 debris flow watersheds and 12 conditioning factors were prepared for research. Firstly, the information gain ratio(IGR) method was used to analyze the predictive ability of the conditioning factors. Subsequently, 12 conditioning factors were involved in the modeling of artificial neural network(ANN), random forest(RF) and support vector machine(SVM). Then, the receiver operating characteristic curves(ROC) and the area under curves(AUC) were used to evaluate the model performance. Finally, a scoring system was used to score the quality of the debris flow susceptibility maps. Samples obtained from the accumulation area have the strongest predictive ability and can make the models achieve the best performance. The AUC values corresponding to the best model performance on the validation dataset were 0.861, 0.804 and 0.856 for SVM, ANN and RF respectively. The sampling strategy of the centroid of the scarp area is optimal with the highest quality of debris flow susceptibility maps having scores of 373470, 393241 and 362485 for SVM, ANN and RF respectively.
文摘Anomaly detection is now very important in the network because the increasing use of the internet and security of a network or user is a main concern of any network administrator. As the use of the internet increases, so the chances of having a threat or attack in the network are also increasing day by day and traffic in the network is also increasing. It is very difficult to analyse all the traffic data in network for finding the anomaly in the network and sampling provides a way to analyse the anomalies in network with less traffic data. In this paper, we propose a port scan detection approach called CPST uses connection status and pattern of the connections to detect a particular source is scanner or benign host. We also show that this approach works efficiently under different sampling methods.
基金supported by grants from Shanghai Agriculture Applied Technology Development Program,China(Grant No.:2020-02-08-00-08-F01456)the Key Research and Development Program of Zhejiang Province,China(Grant No.:2020C02024-2).
文摘The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.
文摘<strong><em>Background: </em></strong>The appropriate time to initiate antiretroviral therapy (ART) in HIV/AIDS patients is determined by measurement of CD4+/CD8+ T cell count. The CD4/CD8+ T cell count is also useful, together with viral load, in monitoring disease progression and effectiveness treatment regimens. Several factors may contribute to sample rejection during the CD4+/CD8+ T cells count, resulting in negative effects on patient management. <strong> <em>Objective: </em></strong>Evaluate the causes for CD4+CD8+ T cell count sample rejection at the Kenyatta National Hospital Comprehensive Care Center Laboratory. <strong><em>Method:</em></strong> A retrospective cross-sectional study was conducted between 2018 and 2020. Data was obtained from the “rejected samples” for Partec<sup>R</sup> FlowCyp flow cytometry file. Designed data collection sheet was used for data capture. A total of 3972 samples were submitted for CD4+/CD8+ T cell count during the study period. Causes for sample rejection were numbered 1 to 12, each representing a reason for sample rejection. Number 1 was sub-categorized into clotted, hemolyzed, short-draw and lipemic. Data was analyzed using excel, and presented using tables, graphs and pie charts. Approval to conduct the study was obtained from KNH/UoN ERC. <strong> <em>Results: </em></strong>In the study period, 81/3972 (2.0%) samples were rejected. Samples submitted more than 48 hours after collection were mostly rejected. Other factors included improper collection technique, delayed testing, patient identification error and incorrect use of vacutainer. A combination of clotted samples, specimen submission more than 48 hours caused the most frequent sample rejection, followed with combination of specimen submission more than 48 hours, delayed testing and delayed specimen processing. Together, clotted samples, incorrect vacutainer and poor specimen label caused the least sample rejection. <strong><em>Conclusion:</em></strong> Sample rejection rate for CD4/CD8+ T cell count was relatively low, and multiple factors contributed to rejection. However, improved quality assurance will enable more benefit to patients who seek this test in the laboratory.
基金supported by the National Natural Science Foundation of China(Nos.11902271 and 91952203)the Fundamental Research Funds for the Central Universities of China(No.G2019KY05102)111 project on“Aircraft Complex Flows and the Control”of China(No.B17037)。
文摘An improved Reduced-Order Model(ROM)is proposed based on a flow-solution preprocessing operation and a fast sampling strategy to efficiently and accurately predict ionized hypersonic flows.This ROM is generated in low-dimensional space by performing the Proper Orthogonal Decomposition(POD)on snapshots and is coupled with the Radial Basis Function(RBF)to achieve fast prediction speed.However,due to the disparate scales in the ionized flow field,the conventional ROM usually generates spurious negative errors.Here,this issue is addressed by performing flow-solution preprocessing in logarithmic space to improve the conventional ROM.Then,extra orthogonal polynomials are introduced in the RBF interpolation to achieve additional improvement of the prediction accuracy.In addition,to construct high-efficiency snapshots,a trajectory-constrained adaptive sampling strategy based on convex hull optimization is developed.To evaluate the performance of the proposed fast prediction method,two hypersonic vehicles with classic configurations,i.e.a wave-rider and a reentry capsule,are used to validate the proposed method.Both two cases show that the proposed fast prediction method has high accuracy near the vehicle surface and the free-stream region where the flow field is smooth.Compared with the conventional ROM prediction,the prediction results are significantly improved by the proposed method around the discontinuities,e.g.the shock wave and the ionized layer.As a result,the proposed fast prediction method reduces the error of the conventional ROM by at least 45%,with a speedup of approximately 2.0×105compared to the Computational Fluid Dynamic(CFD)simulations.These test cases demonstrate that the method developed here is efficient and accurate for predicting ionized hypersonic flows.
基金National Natural Science Foundation of China(U22B20131)State Key Laboratory of Explosion Science and Technology(QNKT23-10)for supporting this project.
文摘Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism and conditions of unwanted ignition inside charged propellant under accident stimulus.Secondly, evaluates the risk of a shell crevice in a solid rocket motor(SRM) under a falling or overturning scene. In the present study, an innovative visual crevice extrusion experiment is designed using a dropweight apparatus. The dynamic responses of NEPE propellant during extrusion loading, including compaction and compression, rapid shear flow into the crevice, stress concentration, and ignition reaction, have been firstly observed using a high-performance high-speed camera. The ignition reaction is observed in the triangular region of the NEPE propellant sample above the crevice when the drop weight velocity was 1.90 m/s. Based on the user material subroutine interface UMAT provided by finite element software LS-DYNA, a viscoelastic-plastic model and dual ignition criterion related to plastic shear dissipation are developed and applied to the local ignition response analysis under crevice extrusion conditions. The stress concentration occurs in the crevice location of the propellant sample, the shear stress is relatively large, the effective plastic work is relatively large, and the ignition reaction is easy to occur. When the sample thickness decreases from 5 mm to 2.5 mm, the shear stress increases from 22.3 MPa to 28.6 MPa, the critical value of effective plastic work required for ignition is shortened from 1280 μs to 730 μs, and the triangular area is easily triggering an ignition reaction. The propellant sample with a small thickness is more likely to stress concentration, resulting in large shear stress and effective work, triggering an ignition reaction.
文摘视频帧之间不仅具有空间相关性,还存在时间相关性。根据低分辨率视频重建高分辨率视频时,可以利用相邻的多帧信息对齐到目标帧,以指导当前帧的恢复。相邻帧之间的对齐一般采用光流指导的可变形卷积进行显式对齐,这种方法克服了可变形卷积的不稳定性,但会影响帧中高频信息的恢复,降低对齐信息的准确性并放大伪影。为解决上述问题,提出了一种基于隐式对齐的视频超分模型IAVSR(Implicit Alignment Video Super-Resolution)。IAVSR通过偏移量和原始值将光流编码到特定像素位置,以此计算光流预对齐的信息而不是利用插值函数插值获得,随后利用光流指导的可变形卷积对计算后的预对齐特征进行重对齐,以帮助高频信息的恢复。在双向传播中利用前两帧传播的信息进行对齐来指导当前帧的恢复,并引入残差网络结构,在提高对齐信息准确性的同时避免引入过多的参数。在REDS4公开数据集上的实验结果表明,IAVSR的峰值信噪比(PSNR)比基准模型提高了0.6 dB,且模型训练时的收敛速度提升了20%。