期刊文献+
共找到179篇文章
< 1 2 9 >
每页显示 20 50 100
Ingel’s Theory on International Fairness Based on Simplified Voting System of UNSC
1
作者 Yinge Li 《Sociology Study》 2025年第4期188-203,共16页
According to the Charter of the United Nations,the United Nations Security Council adopts a“collective security system”authorized voting system,which has prominent drawbacks such as difficulty in fully reflecting th... According to the Charter of the United Nations,the United Nations Security Council adopts a“collective security system”authorized voting system,which has prominent drawbacks such as difficulty in fully reflecting the will of all Member States.Combining interdisciplinary,qualitative and quantitative research methods,in response to the dilemma of Security Council voting reform,this article suggests retaining the Security Council voting system and recommending a simplified model of“basic and weighted half”for voting allocation.This model not only inherits the authorized voting system of the collective security system,but also follows the allocation system of sovereignty equality in the Charter.It can also achieve the“draw on the advantages and avoid disadvantages”of Member States towards international development,promote the transformation of“absolute equality”of overall consistency into“real fairness”relative to individual contributions,and further promote the development of international law in the United Nations voting system. 展开更多
关键词 United Nations Security Council authorized voting model and formula Security Council reform international law research
在线阅读 下载PDF
Preventing Phishing Attack on Voting System Using Visual Cryptography
2
作者 Ahood Alotaibi Lama Alhubaidi +3 位作者 Alghala Alyami Leena Marghalani Bashayer Alharbi Naya Nagy 《Journal of Computer and Communications》 2022年第10期149-161,共13页
Phishing is one of the most common social engineering attacks that users over the internet fall for. An example is voting systems, and because such systems should be accurate and error free, phishing prevention techni... Phishing is one of the most common social engineering attacks that users over the internet fall for. An example is voting systems, and because such systems should be accurate and error free, phishing prevention techniques are crucial. Visual Cryptography (VC) is utilized for efficient voting system authentication to cast votes. VC is one of the most secure approaches for privacy protection as it ensures the confidentiality of the voting system. This paper discusses proposed phishing prevention methods and compares different proposed methods. 展开更多
关键词 Remote voting system (RVS) voting system (VS) SHARES Ballots AUTHENTICATION Visual Cryptography PHISHING CAPTCHA
在线阅读 下载PDF
Voting System Based on Blockchain
3
作者 Zihan Guo Xiang He Peiyan Zou 《Journal of Computer Science Research》 2021年第2期27-38,共12页
Online ballot box system has the advantages of high efficiency and environmental protection,but the existing network voting technology still has a lot of matter.Almost all electronic voting system could be proved to b... Online ballot box system has the advantages of high efficiency and environmental protection,but the existing network voting technology still has a lot of matter.Almost all electronic voting system could be proved to be intrusion.The administrator of the system could tamper with the data for benefit,and the system may be attacked by hackers.The safety and fairness of the existing network voting system depend entirely on the safety and credibility of the website itself,but these cannot guarantee the fairness of voting.Make full use of blockchain technology,so that voting,even if there are malicious participants,but also to ensure the correctness and safety of the vote.The introduction of block chain technology,block chain has decentralized,data tampering and other characteristics.P2P network is applied in the block chain layer to construct a distributed database,digital signature algorithm and encryption technology are used to ensure that the data cannot be tampered with,consensus network algorithm is used to ensure the consistency of the data in the network,and timestamp technology is applied to save the data blocks in a chain structure connected end to end.It paper focuses on the implementation of P2P network networking mode,node block synchronization,data and block verification mechanism and consensus mechanism to ensure data consistency in the network layer of block chain layer.Using time stamp,Merkle tree,asymmetric encryption and other technologies to design data blocks and use chain structure to store data blocks.Combined with the characteristics of blockchain,a fair and transparent voting system is constructed.Model aims to apply the block chain technology to the voting scenario and design a secure block chain voting architecture.It system is designed and developed based on the block chain system.It makes full use of its decentralization,removes the dependence of electronic voting on trusted third parties,and protects the privacy of voters and candidates.Data cannot be tampered with.Once the data are stored in the block chain,it cannot be tampered with.It provides a real and credible database. 展开更多
关键词 Blockchain voting system DECENTRALIZATION Data cannot be tampered with
在线阅读 下载PDF
Weighted Voting Ensemble Model Integrated with IoT for Detecting Security Threats in Satellite Systems and Aerial Vehicles
4
作者 Raed Alharthi 《Journal of Computer and Communications》 2025年第2期250-281,共32页
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl... Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy. 展开更多
关键词 Intrusion Detection Cyber-Physical systems Drone Security Weighted Ensemble voting Unmanned Vehicles Security Strategies
在线阅读 下载PDF
Network-Based Voting System—Evaluation and Optimization of CCMVS
5
作者 张欢 唐竞新 《Tsinghua Science and Technology》 SCIE EI CAS 2001年第1期34-37,共4页
This paper gives a brief introduction to a novel voting system, the Network-based Voting System (NVS). The system design is based on the careful analysis and evaluation of a traditional voting system, the computer con... This paper gives a brief introduction to a novel voting system, the Network-based Voting System (NVS). The system design is based on the careful analysis and evaluation of a traditional voting system, the computer controlled and managed voting system. The new system integrates technologies such as image processing, networking and databases to enhance three aspects of system performance: data collection, data transfer, and data management. Experiments have proved that the performance of the network-based voting system is superior to the CCMVS. 展开更多
关键词 NETWORK voting system CLIENT/SERVER
原文传递
Anonymous voting for multi-dimensional CV quantum system 被引量:1
6
作者 施荣华 肖伊 +2 位作者 石金晶 郭迎 Moon-Ho Lee 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期78-84,共7页
We investigate the design of anonymous voting protocols,CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables(CV) in a multi-dimensional quantum cryptosystem to ensure the security... We investigate the design of anonymous voting protocols,CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables(CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy.The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission,which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states.It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security,especially in large-scale votes. 展开更多
关键词 quantum cryptography anonymous voting quantum entangled state continuous variable
原文传递
基于机器学习Voting集成算法的慢性咳嗽中医证候诊断模型构建 被引量:1
7
作者 白逸晨 秦苏杨 +6 位作者 周崇云 史利卿 季坤 张楚楚 李盼飞 崔唐明 李海燕 《中医杂志》 北大核心 2025年第11期1119-1127,共9页
目的探索慢性咳嗽中医证候诊断机器学习模型的构建及采用Voting集成算法进行优化的方法。方法回顾性收集北京中医药大学东方医院呼吸科921例慢性咳嗽患者的病例资料,通过标准化处理提取84项临床特征,进行中医证候类型判定。筛选例数>... 目的探索慢性咳嗽中医证候诊断机器学习模型的构建及采用Voting集成算法进行优化的方法。方法回顾性收集北京中医药大学东方医院呼吸科921例慢性咳嗽患者的病例资料,通过标准化处理提取84项临床特征,进行中医证候类型判定。筛选例数>50的证候类型所属病例数据形成慢性咳嗽中医证候诊断专病数据集。采用合成少数类过采样技术(SMOTE)平衡数据后,构建Logistic回归(LR)、决策树(DT)、多层感知机(MLP)和引导聚集(Bagging)4种基础模型,通过硬投票方式融合为Voting集成算法模型,并运用准确率、召回率、精确率、F1分数、受试者工作特征(ROC)曲线、ROC曲线下面积(AUC)及混淆矩阵评价模型性能。结果921例慢性咳嗽患者例数>50的证型为湿热郁肺证(294例)、风邪伏肺证(103例)、寒饮伏肺证(102例)、痰热郁肺证(64例)、肺阳亏虚证(54例)、痰湿阻肺证(53例)6种证候类型,共计670例,故为专病数据集。6种证候类型的患者高频症状可见咳嗽、咳痰、异味诱咳、咽痒、咽痒则咳、冷风诱咳等。构建的4种基础模型中,MLP模型的中医证候诊断效能最佳(测试集中准确率0.9104,AUC 0.9828);与4种基础模型相比,Voting集成算法模型性能表现最优,在训练集和测试中准确率分别为0.9289和0.9253,过拟合差异为0.0036,测试集中AUC值为0.9836,较所有基础模型的准确率和AUC均有所改善,且对湿热郁肺证(AUC 0.9984)和风邪伏肺证(AUC 0.9970)诊断效果更优。结论Voting集成算法有效整合多种机器学习优势,集成后的慢性咳嗽中医证候诊断模型效能得到了进一步优化,具有较高的准确性和更强的泛化能力。 展开更多
关键词 慢性咳嗽 机器学习 证候 诊断模型 voting集成算法
原文传递
Oscillatory Failure Detection for Flight Control System Using Voting and Comparing Monitors
8
作者 XUE Ying YAO Zhenqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第5期817-827,共11页
Oscillatory failure cases(OFC)detection in the fly-by-wire(FBW)flight control system for civil aircraft is addressed in this paper.First,OFC is ranked four levels:Handling quality,static load,global structure fatigue ... Oscillatory failure cases(OFC)detection in the fly-by-wire(FBW)flight control system for civil aircraft is addressed in this paper.First,OFC is ranked four levels:Handling quality,static load,global structure fatigue and local fatigue,according to their respect impact on aircraft.Second,we present voting and comparing monitors based on un-similarity redundancy commands to detect OFC.Third,the associated performances,the thresholds and the counters of the monitors are calculated by the high fidelity nonlinear aircraft models.Finally,the monitors of OFC are verified by the Iron Bird Platform with real parameters of the flight control system.The results show that our approach can detect OFC rapidly. 展开更多
关键词 OSCILLATORY failure FLY-BY-WIRE FLIGHT control system MONITOR voting
在线阅读 下载PDF
New Parallel N-Input Voting for Large Scale Fault-Tolerant Control Systems
9
作者 Abbas Karimi Faraneh Zarafshan +1 位作者 Adznan B.Jantan S.A.R.Al-Haddad 《Journal of Electronic Science and Technology》 CAS 2011年第2期174-179,共6页
Average(mean)voter is one of the commonest voting methods suitable for decision making in highly-available and long-missions applications where the availability and the speed of the system are critical.In this paper,a... Average(mean)voter is one of the commonest voting methods suitable for decision making in highly-available and long-missions applications where the availability and the speed of the system are critical.In this paper,a new generation of average voter based on parallel algorithms and parallel random access machine(PRAM)structure are proposed.The analysis shows that this algorithm is optimal due to its improved time complexity,speed-up,and efficiency and is especially appropriate for applications where the size of input space is large. 展开更多
关键词 Divide and conquer FAULT-TOLERANT parallel algorithm voting algorithm.
在线阅读 下载PDF
基于Voting集成算法的中药抗炎预测模型的构建
10
作者 乔塬淏 谢虹亭 +5 位作者 胡馨雨 安宸 刘泽豪 陈美池 薛鹏 朱世杰 《中草药》 北大核心 2025年第15期5529-5537,共9页
目的以中药药性作为特征变量,构建基于Voting集成算法的中药抗炎作用预测模型,并通过可视化技术分析不同药性特征对于中药抗炎作用的影响。方法以《中药学》与SymMap数据库中1247味中药为研究对象,经过初筛和复筛后建立包含性味归经等... 目的以中药药性作为特征变量,构建基于Voting集成算法的中药抗炎作用预测模型,并通过可视化技术分析不同药性特征对于中药抗炎作用的影响。方法以《中药学》与SymMap数据库中1247味中药为研究对象,经过初筛和复筛后建立包含性味归经等特征的规范化数据库。基于决策树、支持向量机、轻量级梯度提升机等6种基础模型构建Voting集成模型,并以七折交叉验证和基于树结构的贝叶斯优化算法超参数优化提升模型性能。利用SHAP(SHapley Additive ex Planations)解释器可视化关键药性特征。结果经筛选后,共纳入522味抗炎中药构建数据库。Voting集成模型综合性能最优,F1分数为0.797,AUC值为0.77,较单一模型平均提升7.4%。SHAP分析表明使中药发挥抗炎作用的重要特征分别是“脾经”“甘味”“补益”等,使中药不具有抗炎作用的重要特征为“性温或平”和“毒性”。结论首次通过集成算法构建具有良好性能的中药抗炎作用预测模型,为中医药与机器学习结合的研究模式提供了新思路。 展开更多
关键词 voting集成算法 中药 抗炎 机器学习 药性 四气五味
原文传递
A Novel Fuzzy Membership Partitioning for Improved Voting in Fault Tolerant System
11
作者 Akhilesh Pathak Tarang Agarwal Anand Mohan 《Journal of Intelligent Learning Systems and Applications》 2015年第1期1-10,共10页
This paper presents a novel technique for improved voting by adaptively varying the membership boundaries of a fuzzy voter to achieve realistic consensus among inputs of redundant modules of a fault tolerant system. W... This paper presents a novel technique for improved voting by adaptively varying the membership boundaries of a fuzzy voter to achieve realistic consensus among inputs of redundant modules of a fault tolerant system. We demonstrate that suggested dynamic membership partitioning minimizes the number of occurrences of incorrect outputs of a voter as compared to the fixed membership partitioning voter implementations. Simulation results for the proposed voter for Triple Modular Redundancy (TMR) fault tolerant system indicate that our algorithm shows better safety and availability performance as compared to the existing one. However, our voter design is general and thus it can be potentially useful for improving safety and availability of critical fault tolerant systems. 展开更多
关键词 FAULT Tolerance FAULT MASKING Threshold Fuzzy voting MAJORITY voting Safety AVAILABILITY
暂未订购
An Overlap Sharding Blockchain:Reputation Voting Enabling Security and Efficiency for Dynamic AP Management in 6G UCAN 被引量:1
12
作者 Wang Jupen Hu Bo +2 位作者 Chen Shanzhi Zhang Yiting Wang Yilei 《China Communications》 2025年第7期208-219,共12页
Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a... Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a bottleneck to the widespread adoption of UCAN in 6G.In this paper,we propose Overlap Shard,a blockchain framework based on a novel reputation voting(RV)scheme,to dynamically manage the APs in UCAN.AP nodes in UCAN are distributed across multiple shards based on the RV scheme.That is,nodes with good reputation(virtuous behavior)are likely to be selected in the overlap shard.The RV mechanism ensures the security of UCAN because most APs adopt virtuous behaviors.Furthermore,to improve the efficiency of the Overlap Shard,we reduce cross-shard transactions by introducing core nodes.Specifically,a few nodes are overlapped in different shards,which can directly process the transactions in two shards instead of crossshard transactions.This greatly increases the speed of transactions between shards and thus the throughput of the overlap shard.The experiments show that the throughput of the overlap shard is about 2.5 times that of the non-sharded blockchain. 展开更多
关键词 blockchain reputation voting scheme sharding 6G
在线阅读 下载PDF
Optimized Deep Feature Learning with Hybrid Ensemble Soft Voting for Early Breast Cancer Histopathological Image Classification
13
作者 Roseline Oluwaseun Ogundokun Pius Adewale Owolawi Chunling Tu 《Computers, Materials & Continua》 2025年第9期4869-4885,共17页
Breast cancer is among the leading causes of cancer mortality globally,and its diagnosis through histopathological image analysis is often prone to inter-observer variability and misclassification.Existing machine lea... Breast cancer is among the leading causes of cancer mortality globally,and its diagnosis through histopathological image analysis is often prone to inter-observer variability and misclassification.Existing machine learning(ML)methods struggle with intra-class heterogeneity and inter-class similarity,necessitating more robust classification models.This study presents an ML classifier ensemble hybrid model for deep feature extraction with deep learning(DL)and Bat Swarm Optimization(BSO)hyperparameter optimization to improve breast cancer histopathology(BCH)image classification.A dataset of 804 Hematoxylin and Eosin(H&E)stained images classified as Benign,in situ,Invasive,and Normal categories(ICIAR2018_BACH_Challenge)has been utilized.ResNet50 was utilized for feature extraction,while Support Vector Machines(SVM),Random Forests(RF),XGBoosts(XGB),Decision Trees(DT),and AdaBoosts(ADB)were utilized for classification.BSO was utilized for hyperparameter optimization in a soft voting ensemble approach.Accuracy,precision,recall,specificity,F1-score,Receiver Operating Characteristic(ROC),and Precision-Recall(PR)were utilized for model performance metrics.The model using an ensemble outperformed individual classifiers in terms of having greater accuracy(~90.0%),precision(~86.4%),recall(~86.3%),and specificity(~96.6%).The robustness of the model was verified by both ROC and PR curves,which showed AUC values of 1.00,0.99,and 0.98 for Benign,Invasive,and in situ instances,respectively.This ensemble model delivers a strong and clinically valid methodology for breast cancer classification that enhances precision and minimizes diagnostic errors.Future work should focus on explainable AI,multi-modal fusion,few-shot learning,and edge computing for real-world deployment. 展开更多
关键词 Breast cancer classification ensemble learning deep learning bat swarm optimization HISTOPATHOLOGY soft voting
在线阅读 下载PDF
Comparison of the performance of gradient boost,linear regression,decision tree,and voting algorithms to separate geochemical anomalies areas in the fractal environment
14
作者 Mirmahdi Seyedrahimi-Niaraq Hossein Mahdiyanfar Mohammad hossein Olyaee 《Artificial Intelligence in Geosciences》 2025年第2期290-305,共16页
In this investigation,the Gradient Boosting(GB),Linear Regression(LR),Decision Tree(DT),and Voting algo-rithms were applied to predict the distribution pattern of Au geochemical data.Trace and indicator elements,inclu... In this investigation,the Gradient Boosting(GB),Linear Regression(LR),Decision Tree(DT),and Voting algo-rithms were applied to predict the distribution pattern of Au geochemical data.Trace and indicator elements,including Mo,Cu,Pb,Zn,Ag,Ni,Co,Mn,Fe,and As,were used with these machine learning algorithms(MLAs)to predict Au concentration values in the Doostbigloo porphyry Cu-Au-Mo mineralization area.The performance of the models was evaluated using the Mean Absolute Percentage Error(MAPE)and Root Mean Square Error(RMSE)metrics.The proposed ensemble Voting algorithm outperformed the other models,yielding more ac-curate predictions according to both metrics.The predicted data from the GB,LR,DT,and Voting MLAs were modeled using the Concentration-Area fractal method,and Au geochemical anomalies were mapped.To compare and validate the results,factors such as the location of the mineral deposits,their surface extent,and mineralization trend were considered.The results indicate that integrating hybrid MLAs with fractal modeling signifi-cantly improves geochemical prospectivity mapping.Among the four models,three(DT,GB,Voting)accurately identified both mineral deposits.The LR model,however,only identified Deposit I(central),and its mineralization trend diverged from the field data.The GB and Voting models produced similar results,with their final maps derived from fractal modeling showing the same anomalous areas.The anomaly boundaries identified by these two models are consistent with the two known reserves in the region.The results and plots related to prediction indicators and error rates for these two models also show high similarity,with lower error rates than the other models.Notably,the Voting model demonstrated superior performance in accurately delineating mineral deposit locations and identifying realistic mineralization trends while minimizing false anomalies. 展开更多
关键词 Gradient boost Linear regression Decision tree voting algorithm C-A fractal modeling Geochemical mapping
在线阅读 下载PDF
A dual-approach to genomic predictions:leveraging convolutional networks and voting classifiers
15
作者 Raghad K.Mohammed Azmi Tawfeq Hussein Alrawi Ali Jbaeer Dawood 《Biomedical Engineering Communications》 2025年第1期3-11,共9页
Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the ident... Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the identification of risk factors associated with genetic disorders.Methods:Our study introduces a novel two-tiered analytical framework to raise the precision and reliability of genetic data interpretation.It is initiated by extracting and analyzing salient features from DNA sequences through a CNN-based feature analysis,taking advantage of the power inherent in Convolutional neural networks(CNNs)to attain complex patterns and minute mutations in genetic data.This study embraces an elite collection of machine learning classifiers interweaved through a stern voting mechanism,which synergistically joins the predictions made from multiple classifiers to generate comprehensive and well-balanced interpretations of the genetic data.Results:This state-of-the-art method was further tested by carrying out an empirical analysis on a variants'dataset of DNA sequences taken from patients affected by breast cancer,juxtaposed with a control group composed of healthy people.Thus,the integration of CNNs with a voting-based ensemble of classifiers returned outstanding outcomes,with performance metrics accuracy,precision,recall,and F1-scorereaching the outstanding rate of 0.88,outperforming previous models.Conclusions:This dual accomplishment underlines the transformative potential that integrating deep learning techniques with ensemble machine learning might provide in real added value for further genetic diagnostics and prognostics.These results from this study set a new benchmark in the accuracy of disease diagnosis through DNA sequencing and promise future studies on improved personalized medicine and healthcare approaches with precise genetic information. 展开更多
关键词 CNN DNA sequencing ensemble machine learning genetic disease voting classifier
在线阅读 下载PDF
基于Tensor Voting的蚁蛉翅脉修补 被引量:9
16
作者 左西年 刘来福 +1 位作者 王心丽 沈佐锐 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期135-138,共4页
针对蚁蛉模式识别中蚁蛉翅脉断裂问题,利用Tensor Voting技术修补其数字照片中断裂的翅脉;展示将其应用于蚁蛉模式识别前期处理,以获取主要翅脉尽量完整信息的算法;数值实验中采用3种蚁蛉翅的图像作为测试,收到了很好的结果.
关键词 蚁蛉 模式识别 TENSOR voting 翅脉修补
在线阅读 下载PDF
应用Voting Machine构建研究型、互动型的双语物理课堂的研究与实践 被引量:2
17
作者 张勇 恽瑛 +1 位作者 朱明 周雨青 《大学物理》 北大核心 2008年第2期54-57,共4页
高等教育"质量工程"的实施为高等学校本科教学提出了更新、更高的要求和挑战.本文报道了应用Voting Machine这一具有强大的互动和统计功能的教学设备在双语物理课堂上开展研究型、互动型教学的实践和研究成果.
关键词 voting MACHINE 双语物理 课堂教学模式
在线阅读 下载PDF
Deep Learning-Based Robust Morphed Face Authentication Framework for Online Systems
18
作者 Harsh Mankodiya Priyal Palkhiwala +6 位作者 Rajesh Gupta Nilesh Kumar Jadav Sudeep Tanwar Osama Alfarraj Amr Tolba Maria Simona Raboaca Verdes Marina 《Computers, Materials & Continua》 SCIE EI 2023年第10期1123-1142,共20页
The amalgamation of artificial intelligence(AI)with various areas has been in the picture for the past few years.AI has enhanced the functioning of several services,such as accomplishing better budgets,automating mult... The amalgamation of artificial intelligence(AI)with various areas has been in the picture for the past few years.AI has enhanced the functioning of several services,such as accomplishing better budgets,automating multiple tasks,and data-driven decision-making.Conducting hassle-free polling has been one of them.However,at the onset of the coronavirus in 2020,almost all worldly affairs occurred online,and many sectors switched to digital mode.This allows attackers to find security loopholes in digital systems and exploit them for their lucrative business.This paper proposes a three-layered deep learning(DL)-based authentication framework to develop a secure online polling system.It provides a novel way to overcome security breaches during the face identity(ID)recognition and verification process for online polling systems.This verification is done by training a pixel-2-pixel Pix2pix generative adversarial network(GAN)for face image reconstruction to remove facial objects present(if any).Furthermore,image-to-image matching is done by implementing the Siamese network and comparing the result of various metrics executed on feature embeddings to obtain the outcome,thus checking the electorate credentials. 展开更多
关键词 Artificial intelligence DISCRIMINATOR GENERATOR Pix2pix GANs Kullback-Leibler(KL)-divergence online voting system Siamese network
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部