期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Tsinghua University Voted Formal Member of PIM
1
《Tsinghua Science and Technology》 SCIE EI CAS 2006年第1期87-87,共1页
关键词 Tsinghua University voted Formal Member of PIM MBA
原文传递
Japan's Aeon voted to build three shopping centers
2
作者 Liu Xinxin 《纺织服装周刊》 2012年第11期56-56,共1页
Recently,the AEON Corporation of Japan announced that it will be stationed in Wuhan, to build three large shopping centers. AEON Co.,Ltd.had signed a letter of intent with Wuhan municipal government,
关键词 Japan’s Aeon voted to build three shopping centers
原文传递
一种基于高光谱技术的温室环境下叶片遮挡树莓果实识别模型 被引量:1
3
作者 陈竹筠 席瑞谦 +2 位作者 张晓乾 顾玉红 任振辉 《河北农业大学学报》 北大核心 2025年第3期107-116,126,共11页
在智能化农业管理中,精准识别被叶片遮挡的树莓果实是实现高效采摘作业的关键难题。传统机器视觉技术因果实易被叶片遮挡而难以准确定位,影响采摘效率与质量,也无法满足温室对果实生长状况精准监测与管理的需求。本研究针对现有机器视... 在智能化农业管理中,精准识别被叶片遮挡的树莓果实是实现高效采摘作业的关键难题。传统机器视觉技术因果实易被叶片遮挡而难以准确定位,影响采摘效率与质量,也无法满足温室对果实生长状况精准监测与管理的需求。本研究针对现有机器视觉技术在处理遮挡问题上的局限性,开发了一种基于高光谱技术的树莓果实识别方法,首次引入并优化了voting-RF-MLP集成模型。通过采集不同遮挡状态下的树莓果实反射率光谱数据,为模型训练提供了全面的数据集,并采用定制化的数据预处理和PCA特征提取算法提升数据质量。voting-RF-MLP模型结合随机森林(RF)和多层感知器(MLP)优势,通过GridSearchCV算法优化超参数,确保最优性能。测试结果显示,voting-RF-MLP模型在各类遮挡状态下分类性能卓越,准确率达到0.8435,精确度、召回率和F1分数均显著优于传统单一模型。这一成果提高了树莓果实识别的准确性,该模型可为自动化采摘设备提供精准的果实定位支持,在叶片遮挡条件下实现树莓果实深度距离信息(遮挡距离)的预测,且952条光谱样本推理时间仅需13.43 s,可为高光谱技术在复杂农业场景中的高效计算提供算法基础,助力精准农业的智能化升级。 展开更多
关键词 高光谱技术 机器学习 模型优化 树莓果实识别 集成模型 voting算法
在线阅读 下载PDF
基于Voting集成算法的中药抗炎预测模型的构建
4
作者 乔塬淏 谢虹亭 +5 位作者 胡馨雨 安宸 刘泽豪 陈美池 薛鹏 朱世杰 《中草药》 北大核心 2025年第15期5529-5537,共9页
目的以中药药性作为特征变量,构建基于Voting集成算法的中药抗炎作用预测模型,并通过可视化技术分析不同药性特征对于中药抗炎作用的影响。方法以《中药学》与SymMap数据库中1247味中药为研究对象,经过初筛和复筛后建立包含性味归经等... 目的以中药药性作为特征变量,构建基于Voting集成算法的中药抗炎作用预测模型,并通过可视化技术分析不同药性特征对于中药抗炎作用的影响。方法以《中药学》与SymMap数据库中1247味中药为研究对象,经过初筛和复筛后建立包含性味归经等特征的规范化数据库。基于决策树、支持向量机、轻量级梯度提升机等6种基础模型构建Voting集成模型,并以七折交叉验证和基于树结构的贝叶斯优化算法超参数优化提升模型性能。利用SHAP(SHapley Additive ex Planations)解释器可视化关键药性特征。结果经筛选后,共纳入522味抗炎中药构建数据库。Voting集成模型综合性能最优,F1分数为0.797,AUC值为0.77,较单一模型平均提升7.4%。SHAP分析表明使中药发挥抗炎作用的重要特征分别是“脾经”“甘味”“补益”等,使中药不具有抗炎作用的重要特征为“性温或平”和“毒性”。结论首次通过集成算法构建具有良好性能的中药抗炎作用预测模型,为中医药与机器学习结合的研究模式提供了新思路。 展开更多
关键词 Voting集成算法 中药 抗炎 机器学习 药性 四气五味
原文传递
基于机器学习Voting集成算法的慢性咳嗽中医证候诊断模型构建
5
作者 白逸晨 秦苏杨 +6 位作者 周崇云 史利卿 季坤 张楚楚 李盼飞 崔唐明 李海燕 《中医杂志》 北大核心 2025年第11期1119-1127,共9页
目的探索慢性咳嗽中医证候诊断机器学习模型的构建及采用Voting集成算法进行优化的方法。方法回顾性收集北京中医药大学东方医院呼吸科921例慢性咳嗽患者的病例资料,通过标准化处理提取84项临床特征,进行中医证候类型判定。筛选例数>... 目的探索慢性咳嗽中医证候诊断机器学习模型的构建及采用Voting集成算法进行优化的方法。方法回顾性收集北京中医药大学东方医院呼吸科921例慢性咳嗽患者的病例资料,通过标准化处理提取84项临床特征,进行中医证候类型判定。筛选例数>50的证候类型所属病例数据形成慢性咳嗽中医证候诊断专病数据集。采用合成少数类过采样技术(SMOTE)平衡数据后,构建Logistic回归(LR)、决策树(DT)、多层感知机(MLP)和引导聚集(Bagging)4种基础模型,通过硬投票方式融合为Voting集成算法模型,并运用准确率、召回率、精确率、F1分数、受试者工作特征(ROC)曲线、ROC曲线下面积(AUC)及混淆矩阵评价模型性能。结果921例慢性咳嗽患者例数>50的证型为湿热郁肺证(294例)、风邪伏肺证(103例)、寒饮伏肺证(102例)、痰热郁肺证(64例)、肺阳亏虚证(54例)、痰湿阻肺证(53例)6种证候类型,共计670例,故为专病数据集。6种证候类型的患者高频症状可见咳嗽、咳痰、异味诱咳、咽痒、咽痒则咳、冷风诱咳等。构建的4种基础模型中,MLP模型的中医证候诊断效能最佳(测试集中准确率0.9104,AUC 0.9828);与4种基础模型相比,Voting集成算法模型性能表现最优,在训练集和测试中准确率分别为0.9289和0.9253,过拟合差异为0.0036,测试集中AUC值为0.9836,较所有基础模型的准确率和AUC均有所改善,且对湿热郁肺证(AUC 0.9984)和风邪伏肺证(AUC 0.9970)诊断效果更优。结论Voting集成算法有效整合多种机器学习优势,集成后的慢性咳嗽中医证候诊断模型效能得到了进一步优化,具有较高的准确性和更强的泛化能力。 展开更多
关键词 慢性咳嗽 机器学习 证候 诊断模型 Voting集成算法
原文传递
基于多层SimHash的Android恶意应用程序检测方法 被引量:3
6
作者 陈波 潘永涛 陈铁明 《通信学报》 EI CSCD 北大核心 2017年第S2期30-36,共7页
提出一个基于多层SimHash的相似度检测方法,通过对APK文件进行分析,最终从5个方面提取分析内容来表征APK,同时在每一层上使用改进的SimHash方法进行相似度检测分析。通过从APK文件中提取的Android Manifest.xml文件、从dex反编译得出的S... 提出一个基于多层SimHash的相似度检测方法,通过对APK文件进行分析,最终从5个方面提取分析内容来表征APK,同时在每一层上使用改进的SimHash方法进行相似度检测分析。通过从APK文件中提取的Android Manifest.xml文件、从dex反编译得出的Smali代码累加和、Smali文件指令提取、Java代码集合、Java指令集提取5个层面进行分析。同时通过学习Voted Perceptron投票算法,将其应用到检测过程中,采用信任值权重的方法,为每一层赋予一个可信值,并在最后得出结果时将每一层结果结合权重分析,实验分析结果表明该方法具有更好的检测效果。 展开更多
关键词 ANDROID 代码检测 SimHash voted PERCEPTRON
在线阅读 下载PDF
Optimized Deep Feature Learning with Hybrid Ensemble Soft Voting for Early Breast Cancer Histopathological Image Classification
7
作者 Roseline Oluwaseun Ogundokun Pius Adewale Owolawi Chunling Tu 《Computers, Materials & Continua》 2025年第9期4869-4885,共17页
Breast cancer is among the leading causes of cancer mortality globally,and its diagnosis through histopathological image analysis is often prone to inter-observer variability and misclassification.Existing machine lea... Breast cancer is among the leading causes of cancer mortality globally,and its diagnosis through histopathological image analysis is often prone to inter-observer variability and misclassification.Existing machine learning(ML)methods struggle with intra-class heterogeneity and inter-class similarity,necessitating more robust classification models.This study presents an ML classifier ensemble hybrid model for deep feature extraction with deep learning(DL)and Bat Swarm Optimization(BSO)hyperparameter optimization to improve breast cancer histopathology(BCH)image classification.A dataset of 804 Hematoxylin and Eosin(H&E)stained images classified as Benign,in situ,Invasive,and Normal categories(ICIAR2018_BACH_Challenge)has been utilized.ResNet50 was utilized for feature extraction,while Support Vector Machines(SVM),Random Forests(RF),XGBoosts(XGB),Decision Trees(DT),and AdaBoosts(ADB)were utilized for classification.BSO was utilized for hyperparameter optimization in a soft voting ensemble approach.Accuracy,precision,recall,specificity,F1-score,Receiver Operating Characteristic(ROC),and Precision-Recall(PR)were utilized for model performance metrics.The model using an ensemble outperformed individual classifiers in terms of having greater accuracy(~90.0%),precision(~86.4%),recall(~86.3%),and specificity(~96.6%).The robustness of the model was verified by both ROC and PR curves,which showed AUC values of 1.00,0.99,and 0.98 for Benign,Invasive,and in situ instances,respectively.This ensemble model delivers a strong and clinically valid methodology for breast cancer classification that enhances precision and minimizes diagnostic errors.Future work should focus on explainable AI,multi-modal fusion,few-shot learning,and edge computing for real-world deployment. 展开更多
关键词 Breast cancer classification ensemble learning deep learning bat swarm optimization HISTOPATHOLOGY soft voting
在线阅读 下载PDF
An Overlap Sharding Blockchain:Reputation Voting Enabling Security and Efficiency for Dynamic AP Management in 6G UCAN
8
作者 Wang Jupen Hu Bo +2 位作者 Chen Shanzhi Zhang Yiting Wang Yilei 《China Communications》 2025年第7期208-219,共12页
Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a... Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a bottleneck to the widespread adoption of UCAN in 6G.In this paper,we propose Overlap Shard,a blockchain framework based on a novel reputation voting(RV)scheme,to dynamically manage the APs in UCAN.AP nodes in UCAN are distributed across multiple shards based on the RV scheme.That is,nodes with good reputation(virtuous behavior)are likely to be selected in the overlap shard.The RV mechanism ensures the security of UCAN because most APs adopt virtuous behaviors.Furthermore,to improve the efficiency of the Overlap Shard,we reduce cross-shard transactions by introducing core nodes.Specifically,a few nodes are overlapped in different shards,which can directly process the transactions in two shards instead of crossshard transactions.This greatly increases the speed of transactions between shards and thus the throughput of the overlap shard.The experiments show that the throughput of the overlap shard is about 2.5 times that of the non-sharded blockchain. 展开更多
关键词 blockchain reputation voting scheme sharding 6G
在线阅读 下载PDF
A dual-approach to genomic predictions:leveraging convolutional networks and voting classifiers
9
作者 Raghad K.Mohammed Azmi Tawfeq Hussein Alrawi Ali Jbaeer Dawood 《Biomedical Engineering Communications》 2025年第1期3-11,共9页
Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the ident... Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the identification of risk factors associated with genetic disorders.Methods:Our study introduces a novel two-tiered analytical framework to raise the precision and reliability of genetic data interpretation.It is initiated by extracting and analyzing salient features from DNA sequences through a CNN-based feature analysis,taking advantage of the power inherent in Convolutional neural networks(CNNs)to attain complex patterns and minute mutations in genetic data.This study embraces an elite collection of machine learning classifiers interweaved through a stern voting mechanism,which synergistically joins the predictions made from multiple classifiers to generate comprehensive and well-balanced interpretations of the genetic data.Results:This state-of-the-art method was further tested by carrying out an empirical analysis on a variants'dataset of DNA sequences taken from patients affected by breast cancer,juxtaposed with a control group composed of healthy people.Thus,the integration of CNNs with a voting-based ensemble of classifiers returned outstanding outcomes,with performance metrics accuracy,precision,recall,and F1-scorereaching the outstanding rate of 0.88,outperforming previous models.Conclusions:This dual accomplishment underlines the transformative potential that integrating deep learning techniques with ensemble machine learning might provide in real added value for further genetic diagnostics and prognostics.These results from this study set a new benchmark in the accuracy of disease diagnosis through DNA sequencing and promise future studies on improved personalized medicine and healthcare approaches with precise genetic information. 展开更多
关键词 CNN DNA sequencing ensemble machine learning genetic disease voting classifier
在线阅读 下载PDF
Weighted Voting Ensemble Model Integrated with IoT for Detecting Security Threats in Satellite Systems and Aerial Vehicles
10
作者 Raed Alharthi 《Journal of Computer and Communications》 2025年第2期250-281,共32页
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl... Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy. 展开更多
关键词 Intrusion Detection Cyber-Physical Systems Drone Security Weighted Ensemble Voting Unmanned Vehicles Security Strategies
在线阅读 下载PDF
2024 US General Election and Changes in its Party Politics
11
作者 Xie Tao 《Contemporary World》 2025年第1期44-48,共5页
The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in... The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in over 90% counties than in the 2020 general election, but also won seven highly contested swing States with greater edges. This also marks the first time since 2004 that the Republican Party has won a relative majority of popular votes in the presidential election. 展开更多
关键词 House elections US general election presidential election general election Senate elections republican party Republican Party popular votes
在线阅读 下载PDF
Tomographic consistency in imaging lower-mantle plumes and their link to European Cenozoic Rift Volcanism
12
作者 Chiara Civiero Angelo De Min 《Earth and Planetary Physics》 2025年第4期789-798,共10页
A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associate... A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associated with both passive and active mechanisms,but it remains a source of ongoing debate among geoscientists.Here,we show that seismic whole-mantle tomography models consistently identify two extensive low-velocity anomalies beneath the Canary Islands(CEAA)and Western-Central Europe(ECRA)at mid-mantle depths,merging near the core-mantle boundary.These low-velocity features are interpreted as two connected broad plumes originating from the top of the African LLSVP,likely feeding diapir-like upwellings in the upper mantle.The CEAA rises vertically,whereas the ECRA is tilted and dissipates at mantle transition zone depths,possibly due to the interaction with the cold Alpine subducted slab,which hinders its continuity at shallower depths.While plate-boundary forces are considered the primary drivers of rifting,the hypothesis that deep mantle plumes play a role in generating volcanic activity provides a compelling explanation for the European rift-related alkaline volcanism,supported by geological,geophysical,and geochemical evidence. 展开更多
关键词 European Cenozoic rift system Canary Islands hotspot rift-related volcanism whole-mantle tomography vote maps large-scale plumes
在线阅读 下载PDF
3RVAV:A Three-Round Voting and Proof-of-Stake Consensus Protocol with Provable Byzantine Fault Tolerance
13
作者 Abeer S.Al-Humaimeedy 《Computers, Materials & Continua》 2025年第12期5207-5236,共30页
This paper presents 3RVAV(Three-Round Voting with Advanced Validation),a novel Byzantine Fault Tolerant consensus protocol combining Proof-of-Stake with a multi-phase voting mechanism.The protocol introduces three lay... This paper presents 3RVAV(Three-Round Voting with Advanced Validation),a novel Byzantine Fault Tolerant consensus protocol combining Proof-of-Stake with a multi-phase voting mechanism.The protocol introduces three layers of randomized committee voting with distinct participant roles(Validators,Delegators,and Users),achieving(4/5)-threshold approval per round through a verifiable random function(VRF)-based selection process.Our security analysis demonstrates 3RVAV provides 1−(1−s/n)^(3k) resistance to Sybil attacks with n participants and stake s,while maintaining O(kn log n)communication complexity.Experimental simulations show 3247 TPS throughput with 4-s finality,representing a 5.8×improvement over Algorand’s committee-based approach.The proposed protocol achieves approximately 4.2-s finality,demonstrating low latency while maintaining strong consistency and resilience.The protocol introduces a novel punishment matrix incorporating both stake slashing and probabilistic blacklisting,proving a Nash equilibrium for honest participation under rational actor assumptions. 展开更多
关键词 Byzantine fault tolerant proof-of-stake verifiable random function Sybil attack resistance Nash equilibrium committee voting
在线阅读 下载PDF
Three-Dimensional Model Classification Based on VIT-GE and Voting Mechanism
14
作者 Fang Yuan Xueyao Gao Chunxiang Zhang 《Computers, Materials & Continua》 2025年第12期5037-5055,共19页
3D model classification has emerged as a significant research focus in computer vision.However,traditional convolutional neural networks(CNNs)often struggle to capture global dependencies across both height and width ... 3D model classification has emerged as a significant research focus in computer vision.However,traditional convolutional neural networks(CNNs)often struggle to capture global dependencies across both height and width dimensions simultaneously,leading to limited feature representation capabilities when handling complex visual tasks.To address this challenge,we propose a novel 3D model classification network named ViT-GE(Vision Transformer with Global and Efficient Attention),which integrates Global Grouped Coordinate Attention(GGCA)and Efficient Channel Attention(ECA)mechanisms.Specifically,the Vision Transformer(ViT)is employed to extract comprehensive global features from multi-view inputs using its self-attention mechanism,effectively capturing 3D shape characteristics.To further enhance spatial feature modeling,the GGCA module introduces a grouping strategy and global context interactions.Concurrently,the ECA module strengthens inter-channel information flow,enabling the network to adaptively emphasize key features and improve feature fusion.Finally,a voting mechanism is adopted to enhance classification accuracy,robustness,and stability.Experimental results on the ModelNet10 dataset demonstrate that our method achieves a classification accuracy of 93.50%,validating its effectiveness and superior performance. 展开更多
关键词 3D model voting algorithm visual transformer design space
在线阅读 下载PDF
Deep Learning and Machine Learning Architectures for Dementia Detection from Speech in Women
15
作者 Ahlem Walha Amel Ksibi +5 位作者 Mohammed Zakariah Manel Ayadi Tagrid Alshalali Oumaima Saidani Leila Jamel Nouf Abdullah Almujally 《Computer Modeling in Engineering & Sciences》 2025年第3期2959-3001,共43页
Dementia is a neurological disorder that affects the brain and its functioning,and women experience its effects more than men do.Preventive care often requires non-invasive and rapid tests,yet conventional diagnostic ... Dementia is a neurological disorder that affects the brain and its functioning,and women experience its effects more than men do.Preventive care often requires non-invasive and rapid tests,yet conventional diagnostic techniques are time-consuming and invasive.One of the most effective ways to diagnose dementia is by analyzing a patient’s speech,which is cheap and does not require surgery.This research aims to determine the effectiveness of deep learning(DL)and machine learning(ML)structures in diagnosing dementia based on women’s speech patterns.The study analyzes data drawn from the Pitt Corpus,which contains 298 dementia files and 238 control files from the Dementia Bank database.Deep learning models and SVM classifiers were used to analyze the available audio samples in the dataset.Our methodology used two methods:a DL-ML model and a single DL model for the classification of diabetics and a single DL model.The deep learning model achieved an astronomic level of accuracy of 99.99%with an F1 score of 0.9998,Precision of 0.9997,and recall of 0.9998.The proposed DL-ML fusion model was equally impressive,with an accuracy of 99.99%,F1 score of 0.9995,Precision of 0.9998,and recall of 0.9997.Also,the study reveals how to apply deep learning and machine learning models for dementia detection from speech with high accuracy and low computational complexity.This research work,therefore,concludes by showing the possibility of using speech-based dementia detection as a possibly helpful early diagnosis mode.For even further enhanced model performance and better generalization,future studies may explore real-time applications and the inclusion of other components of speech. 展开更多
关键词 Dementia detection in women Alzheimer’s disease deep learning machine learning support vector machine voting classifier
在线阅读 下载PDF
Ingel’s Theory on International Fairness Based on Simplified Voting System of UNSC
16
作者 Yinge Li 《Sociology Study》 2025年第4期188-203,共16页
According to the Charter of the United Nations,the United Nations Security Council adopts a“collective security system”authorized voting system,which has prominent drawbacks such as difficulty in fully reflecting th... According to the Charter of the United Nations,the United Nations Security Council adopts a“collective security system”authorized voting system,which has prominent drawbacks such as difficulty in fully reflecting the will of all Member States.Combining interdisciplinary,qualitative and quantitative research methods,in response to the dilemma of Security Council voting reform,this article suggests retaining the Security Council voting system and recommending a simplified model of“basic and weighted half”for voting allocation.This model not only inherits the authorized voting system of the collective security system,but also follows the allocation system of sovereignty equality in the Charter.It can also achieve the“draw on the advantages and avoid disadvantages”of Member States towards international development,promote the transformation of“absolute equality”of overall consistency into“real fairness”relative to individual contributions,and further promote the development of international law in the United Nations voting system. 展开更多
关键词 United Nations Security Council authorized voting model and formula Security Council reform international law research
在线阅读 下载PDF
高速列车司机室内热舒适性的评价与优化 被引量:8
17
作者 孙春华 宁智 +2 位作者 付娟 阎凯 吕明 《铁道学报》 EI CAS CSCD 北大核心 2014年第4期21-25,共5页
高速列车司机室是整个列车运行的控制中枢,舒适的热环境可有效保证司机良好的工作状态,从而提高列车运行的安全性。本文利用Airpak三维软件对某型高速列车司机室内夏季和冬季极端工况下的热环境进行仿真计算,对司机室内的热舒适性进行... 高速列车司机室是整个列车运行的控制中枢,舒适的热环境可有效保证司机良好的工作状态,从而提高列车运行的安全性。本文利用Airpak三维软件对某型高速列车司机室内夏季和冬季极端工况下的热环境进行仿真计算,对司机室内的热舒适性进行评价。计算结果表明:夏季极端工况(室外温度35℃)下,司机头部温度偏高,头部PMV值偏大,人体感觉偏热;冬季极端工况(室外温度-20℃)下,热环境参数指标满足热舒适性要求。在不改变原有送风系统结构设计的前提下,对司机室空调送风口的风量分配以及送风角度进行了优化。仿真结果表明:优化后的司机室热环境得到明显改善。 展开更多
关键词 高速列车 司机室 热舒适性 送风 温度 PMV(predicted mean vote)
在线阅读 下载PDF
基于Tensor Voting的蚁蛉翅脉修补 被引量:9
18
作者 左西年 刘来福 +1 位作者 王心丽 沈佐锐 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期135-138,共4页
针对蚁蛉模式识别中蚁蛉翅脉断裂问题,利用Tensor Voting技术修补其数字照片中断裂的翅脉;展示将其应用于蚁蛉模式识别前期处理,以获取主要翅脉尽量完整信息的算法;数值实验中采用3种蚁蛉翅的图像作为测试,收到了很好的结果.
关键词 蚁蛉 模式识别 TENSOR VOTING 翅脉修补
在线阅读 下载PDF
贝叶斯网络参数的在线学习算法及应用 被引量:9
19
作者 张少中 杨南海 王秀坤 《小型微型计算机系统》 CSCD 北大核心 2004年第10期1799-1801,共3页
以 EM算法为基础 ,在给定贝叶斯网络结构情况下 ,研究分析了 Voting EM算法并利用该算法对防洪决策贝叶斯网络进行在线参数学习 ,将该算法与 EM算法的学习结果进行了比较分析 ,结果表明 Voting EM算法不但能够进行在线参数学习 。
关键词 贝叶斯NN 参数学习 EM算法 VOTING EM算法
在线阅读 下载PDF
应用Voting Machine构建研究型、互动型的双语物理课堂的研究与实践 被引量:2
20
作者 张勇 恽瑛 +1 位作者 朱明 周雨青 《大学物理》 北大核心 2008年第2期54-57,共4页
高等教育"质量工程"的实施为高等学校本科教学提出了更新、更高的要求和挑战.本文报道了应用Voting Machine这一具有强大的互动和统计功能的教学设备在双语物理课堂上开展研究型、互动型教学的实践和研究成果.
关键词 VOTING MACHINE 双语物理 课堂教学模式
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部