Since its discovery in the 1980s,the insect cell-baculovirus expression vector system(IC-BEVS)has been widely used in biomedical applications,such as recombinant protein expression,drug screening,vaccine development,g...Since its discovery in the 1980s,the insect cell-baculovirus expression vector system(IC-BEVS)has been widely used in biomedical applications,such as recombinant protein expression,drug screening,vaccine development,gene therapy and so on[1].As a eukaryotic system,IC-BEVS has great development prospects due to its advantages such as high safety,simple operation,simultaneous expression of multi-subunit proteins,and suitability for large-scale cultivation[2].展开更多
Climatic variations are becoming important limiting factors for agriculture productivity,as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pes...Climatic variations are becoming important limiting factors for agriculture productivity,as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests.Elevated CO_2 and O_3 are two important climatic factors that have been widely studied before.Elevated CO_2 or O_3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants.Many studies have shown that elevated CO_2 or O_3 decreases the plant nitrogen content,which modulates the characteristics of vector insects.Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO_2 or O_3.In the current review,we describe how elevated CO_2 or O_3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways.We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO_2 or O_3.We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO_2 or O_3.展开更多
Planthoppers are the most notorious rice pests,because they transmit various rice viruses in a persistent-propagative manner.Protein–protein interactions(PPIs)between virus and vector are crucial for virus transmissi...Planthoppers are the most notorious rice pests,because they transmit various rice viruses in a persistent-propagative manner.Protein–protein interactions(PPIs)between virus and vector are crucial for virus transmission by vector insects.However,the number of known PPIs for pairs of rice viruses and planthoppers is restricted by low throughput research methods.In this study,we applied DeNovo,a virus-host sequence-based PPI predictor,to predict potential PPIs at a genome-wide scale between three planthoppers and five rice viruses.PPIs were identified at two different confidence thresholds,referred to as low and high modes.The number of PPIs for the five planthopper-virus pairs ranged from 506 to 1985 in the low mode and from 1254 to 4286 in the high mode.After eliminating the“one-too-many”redundant interacting information,the PPIs with unique planthopper proteins were reduced to 343–724 in the low mode and 758–1671 in the high mode.Homologous analysis showed that 11 sets and 31 sets of homologous planthopper proteins were shared by all planthopper-virus interactions in the two modes,indicating that they are potential conserved vector factors essential for transmission of rice viruses.Ten PPIs between small brown planthopper and rice stripe virus(RSV)were verified using glutathione-S-transferase(GST)/His-pull down or co-immunoprecipitation assay.Five of the ten PPIs were proven positive,and three of the five SBPH proteins were confirmed to interact with RSV.The predicted PPIs provide new clues for further studies of the complicated relationship between rice viruses and their vector insects.展开更多
The green fluorescence of bioluminescent jellyfish Aequorea victoria is due to the presence of the green fluorescent protein (GFP). To examine whether the GFP gene can be applied as a reporter gene in insect cells...The green fluorescence of bioluminescent jellyfish Aequorea victoria is due to the presence of the green fluorescent protein (GFP). To examine whether the GFP gene can be applied as a reporter gene in insect cells, a baculovirus transfer vector containing the neomycin resistance gene (neo) was established. The GFP gene was subcloned into the vector downstream of the polyhedrin gene (ocu) promoter. In the presence of G418, the recombinant virus can be purified. Expression of the GFP gene in the recombinant virus should give rise to synthesis of the GFP with a molecular weight of 30×10 3 dalton, and is observable by the strong green light irradiated by ultraviolet or blue light in viable intact insect cells. The GFP produced in insect cells has typical fluorescent spectra indistinguishable from those of the purified native GFP. The GFP gene as a good reporter gene can be applied to the baculovirus insect cell expression system.展开更多
The insect cellvirus (AcNPV) system was used to express heterologous protein. The recombinant transfer vector pVL1393/hGH was reconstructed in which the human Growth Hormone (hGH) gene was inserted under the control ...The insect cellvirus (AcNPV) system was used to express heterologous protein. The recombinant transfer vector pVL1393/hGH was reconstructed in which the human Growth Hormone (hGH) gene was inserted under the control of the polyhedron gene promoter. The Spodoptera frugiperda (Sf9) cells was cotransfected with the plasmid DNA containing hGH gene and wildtype AcNPV DNA. The hGH gene was transferred to the AcNPV genome DNA through homologous recombination, and the recombinant virus rAcVhGH was obtained by multiple plaque purification. The high level of production of hGH (40 μg/mL) in supernatant of the infected monolayer culture was determined by immunochemiluminescent assay.展开更多
INTRODUCTIONAlthough reliable assays for the detection ofhepatitis C virus and E virus became available, still10% 20% hepatitis are not caused byhepatitis A-E virus[1-3]. In 1996, two research groups isolatedthis agen...INTRODUCTIONAlthough reliable assays for the detection ofhepatitis C virus and E virus became available, still10% 20% hepatitis are not caused byhepatitis A-E virus[1-3]. In 1996, two research groups isolatedthis agent independently and almost simultaneouslyand named hepatitis G virus and GB virus C,respectively[4-7].展开更多
Expansive chemical-based vector control has resulted in development of vector resistance to different insecticides harnessed for prevention of disease transmission in public health. The environmentally safe insect gro...Expansive chemical-based vector control has resulted in development of vector resistance to different insecticides harnessed for prevention of disease transmission in public health. The environmentally safe insect growth regulators and microbial larvicides provide potential tools for insecticide resistance management. The efficacy and persistence of Dimilin GR-2% and Mosquiron 10 EC insect growth regulators were evaluated against Anopheles gambiae s.l larvae under laboratory and simulated field conditions. In laboratory bio-efficacy trials, complete emergence inhibition was achieved at higher concentrations with 96 hours post exposure of mosquito aquatic stages to the two larvicides. In simulation field trials, persistence of both larvicides at higher concentrations increased gradually with complete inhibition attained at 7 days and maintained up to 21 days. In the quest of deploying non insecticide based interventions for a sustainable environment, insect growth regulators can be recommended for operational scale larviciding for mosquito larval control in the context of integrated vector management.展开更多
Soybean pests are one of the major factors limiting yield improvement.With the expansion of area and changes in cropping patterns,a number of new pests have been identified in the main soybean production areas of Chin...Soybean pests are one of the major factors limiting yield improvement.With the expansion of area and changes in cropping patterns,a number of new pests have been identified in the main soybean production areas of China.The common brown leafhopper,Orosius orientalis,is a new pest associated with soybean stay-green virus that has been discovered on cultivated soybean crop in the Yellow-Huai-hai region of China in recent years.The polyphagous insect has a wide feeding range and infests a variety of important grain and cash crops.This paper presents the basic information,geographical distribution,hosts,damage characteristics,plant virus transmission,occurrence patterns,and prevention and control measures O.orientalis.This review also provides insights into integrated prevention and control of the genus Orosius as an insect vector.展开更多
文摘Since its discovery in the 1980s,the insect cell-baculovirus expression vector system(IC-BEVS)has been widely used in biomedical applications,such as recombinant protein expression,drug screening,vaccine development,gene therapy and so on[1].As a eukaryotic system,IC-BEVS has great development prospects due to its advantages such as high safety,simple operation,simultaneous expression of multi-subunit proteins,and suitability for large-scale cultivation[2].
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB11050400)the National Natural Science Foundation of China(31370438)the R&D Special Fund for the Public Welfare Industry(201303019)
文摘Climatic variations are becoming important limiting factors for agriculture productivity,as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests.Elevated CO_2 and O_3 are two important climatic factors that have been widely studied before.Elevated CO_2 or O_3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants.Many studies have shown that elevated CO_2 or O_3 decreases the plant nitrogen content,which modulates the characteristics of vector insects.Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO_2 or O_3.In the current review,we describe how elevated CO_2 or O_3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways.We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO_2 or O_3.We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO_2 or O_3.
基金This work was supported by grants from the National Natural Science Foundation of China(No.31772162)the Chinese Academy of Sciences(No.ZDBS-LYSM027).
文摘Planthoppers are the most notorious rice pests,because they transmit various rice viruses in a persistent-propagative manner.Protein–protein interactions(PPIs)between virus and vector are crucial for virus transmission by vector insects.However,the number of known PPIs for pairs of rice viruses and planthoppers is restricted by low throughput research methods.In this study,we applied DeNovo,a virus-host sequence-based PPI predictor,to predict potential PPIs at a genome-wide scale between three planthoppers and five rice viruses.PPIs were identified at two different confidence thresholds,referred to as low and high modes.The number of PPIs for the five planthopper-virus pairs ranged from 506 to 1985 in the low mode and from 1254 to 4286 in the high mode.After eliminating the“one-too-many”redundant interacting information,the PPIs with unique planthopper proteins were reduced to 343–724 in the low mode and 758–1671 in the high mode.Homologous analysis showed that 11 sets and 31 sets of homologous planthopper proteins were shared by all planthopper-virus interactions in the two modes,indicating that they are potential conserved vector factors essential for transmission of rice viruses.Ten PPIs between small brown planthopper and rice stripe virus(RSV)were verified using glutathione-S-transferase(GST)/His-pull down or co-immunoprecipitation assay.Five of the ten PPIs were proven positive,and three of the five SBPH proteins were confirmed to interact with RSV.The predicted PPIs provide new clues for further studies of the complicated relationship between rice viruses and their vector insects.
文摘The green fluorescence of bioluminescent jellyfish Aequorea victoria is due to the presence of the green fluorescent protein (GFP). To examine whether the GFP gene can be applied as a reporter gene in insect cells, a baculovirus transfer vector containing the neomycin resistance gene (neo) was established. The GFP gene was subcloned into the vector downstream of the polyhedrin gene (ocu) promoter. In the presence of G418, the recombinant virus can be purified. Expression of the GFP gene in the recombinant virus should give rise to synthesis of the GFP with a molecular weight of 30×10 3 dalton, and is observable by the strong green light irradiated by ultraviolet or blue light in viable intact insect cells. The GFP produced in insect cells has typical fluorescent spectra indistinguishable from those of the purified native GFP. The GFP gene as a good reporter gene can be applied to the baculovirus insect cell expression system.
文摘The insect cellvirus (AcNPV) system was used to express heterologous protein. The recombinant transfer vector pVL1393/hGH was reconstructed in which the human Growth Hormone (hGH) gene was inserted under the control of the polyhedron gene promoter. The Spodoptera frugiperda (Sf9) cells was cotransfected with the plasmid DNA containing hGH gene and wildtype AcNPV DNA. The hGH gene was transferred to the AcNPV genome DNA through homologous recombination, and the recombinant virus rAcVhGH was obtained by multiple plaque purification. The high level of production of hGH (40 μg/mL) in supernatant of the infected monolayer culture was determined by immunochemiluminescent assay.
基金Supported by the Neational Natural Science Foundation of China, No. 39825116, 39970394.
文摘INTRODUCTIONAlthough reliable assays for the detection ofhepatitis C virus and E virus became available, still10% 20% hepatitis are not caused byhepatitis A-E virus[1-3]. In 1996, two research groups isolatedthis agent independently and almost simultaneouslyand named hepatitis G virus and GB virus C,respectively[4-7].
文摘Expansive chemical-based vector control has resulted in development of vector resistance to different insecticides harnessed for prevention of disease transmission in public health. The environmentally safe insect growth regulators and microbial larvicides provide potential tools for insecticide resistance management. The efficacy and persistence of Dimilin GR-2% and Mosquiron 10 EC insect growth regulators were evaluated against Anopheles gambiae s.l larvae under laboratory and simulated field conditions. In laboratory bio-efficacy trials, complete emergence inhibition was achieved at higher concentrations with 96 hours post exposure of mosquito aquatic stages to the two larvicides. In simulation field trials, persistence of both larvicides at higher concentrations increased gradually with complete inhibition attained at 7 days and maintained up to 21 days. In the quest of deploying non insecticide based interventions for a sustainable environment, insect growth regulators can be recommended for operational scale larviciding for mosquito larval control in the context of integrated vector management.
基金supported by the National Key Research and Development Program of China(2023YFD1401000)the Earmarked Fund for China Agriculture Research System(CARS-04).
文摘Soybean pests are one of the major factors limiting yield improvement.With the expansion of area and changes in cropping patterns,a number of new pests have been identified in the main soybean production areas of China.The common brown leafhopper,Orosius orientalis,is a new pest associated with soybean stay-green virus that has been discovered on cultivated soybean crop in the Yellow-Huai-hai region of China in recent years.The polyphagous insect has a wide feeding range and infests a variety of important grain and cash crops.This paper presents the basic information,geographical distribution,hosts,damage characteristics,plant virus transmission,occurrence patterns,and prevention and control measures O.orientalis.This review also provides insights into integrated prevention and control of the genus Orosius as an insect vector.