This paper presents the latest developments in the re search progress on mechanisms by which natural plants and crops respond to the doubled concentration of CO2 in the atmosphere, resultant climatic change and the mo...This paper presents the latest developments in the re search progress on mechanisms by which natural plants and crops respond to the doubled concentration of CO2 in the atmosphere, resultant climatic change and the modeling of vegetation and eco-systems in China. In addition, it points out that the future study on global change and terrestrial ecosystems should stress m(?)iti-disciplinary teamwork and inter-discipline penetration. Finally, the paper emphasizes 10 research realms in the field to be enhanced in the future.展开更多
This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model E...This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.展开更多
Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we ...Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we developed the BETR-Urban-Rural-Veg model to quantitatively evaluate the influences of both natural vegetation and crops on the multimedia transport processes of Phenanthrene(PHE)and Benzo(a)pyrene(BaP)in mainland of China.The geographic distribution of polycyclic aromatic hydrocarbon(PAH)emissions and concentrations were consistent,displaying higher levels in northern China while lower levels in southern China.Under seasonal simulations,for both natural vegetation and crops,PAH concentrations in winter and spring were 1.5 to 27-fold higher than in summer and autumn,especially for PHE.Owing to the higher leaf area index(LAI)of natural vegetation and harvesting of crops,the filter and sequestration effect of natural vegetation was stronger than crops,while the seasonal changes of PAH concentrations in crops were more significant than natural vegetation.Temperature,precipitation rates and LAI might have important influences on seasonal concentrations and overall persistence of PAHs.PHE was more sensitive to the impacts of seasonal environmental parameters.Under different landscape scenarios,average annual PAH concentrations in natural vegetation were always a little higher than those in crops,and the overall persistence of BaP was greatly affected increasing by 15.15%-16.47%.This improved model provides a useful tool for environmental management.The results of this study are expected to support land use plans and decision-making in China's mainland.展开更多
A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alp...A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alpine tundra vegetation-LA, Typical alpine tundra vegetation-TA, Meadow alpine tundra vegetation-MA, and Swamp alpine tundra vegetation-SA) on alpine tundra of Changbai Mountains, Jilin Province, China in growing seasons of 2003, 2004 and 2005. The biomass of 43 mono-species and soil nutrients in alpine tundra ecosystem were also investigated. Dominant species from Ericaceae (such as Rhododendron chrysanthum and Vaccinium jliginosum var. alpinum) were taken to analyze organ biomass distribution. Result showed that the biomass and elevation had a significant correlation (Biomass-237.3 in(Elevation) +494.36; R^2=0.8092; P〈0.05). No significant differences were found in phosphorus and sulphur concentrations of roots, stems and leaves among the five vegetation types. There were significant differences in nitrogen and phosphorus stocks of roots, stems and leaves and in sulphur stock of stems and leaves among TA, MA, and SA vegetation types (p〈0.05). The nutrient stock of five vegetations was averagely 72.46 kg.hm^-2, of which N, P, S were 48.55, 10.33 and 13.61 kg·hm^-2, respectively. Soil N and S concentrations in meadow alpine tundra soil type was significantly higher than those in other four soil types (Cold desert alpine tundra soil, Lithic alpine tundra soil, Peat alpine tundra soil, and Gray alpine tundra soil). Phosphorous concentration in SA type was higher (p〈0.05) than in other types. Soil nutrient stock (0-20cm) was averagely 39.59 t.hm^-2, of which N, P, S were 23.74, 5.86, 9.99 t·hm^-2, respectively.展开更多
According to differences in vegetation types and their coverage, combining the latest research, using theory and method on the value of vegetation ecosystem services, this paper not only calculated goods...According to differences in vegetation types and their coverage, combining the latest research, using theory and method on the value of vegetation ecosystem services, this paper not only calculated goods produced by different types of vegetation but also estimated the value of various vegetation ecosystem services and set up database, GIS and eco-account of vegetation ecosystem. The result was as follows: the value of vegetation's primary productivity, soil and fertility conservation, water conservation, CO 2 fixation and O 2 release was 199.6 billion yuan/a, 22.64 billion yuan/a, 22.66 billion yuan/a, 352.24 billion yuan/a and 374.19 billion yuan/a, respectively. The total value of ecosystem services was 968.33 billion yuan/a. The temperate deciduous broad-leaved forest had the highest contribution rate, accounting for 16.42%. The result of value can reflect regional reality more exactly.展开更多
Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and ...Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and atmospheric composition. Vegetation dynamic models has been applied in global change studies, but the com- plex interactions among the carbon (C), water, and nitrogen (N) cycles have not been adequately addressed in the current models. In this study, a process-based vegetation dynamic model was developed to study the responses of dryland ecosystems to environmental changes, emphasizing on the interactions among the C, water, and N proc- esses. To address the interactions between the C and water processes, it not only considers the effects of annual precipitation on vegetation distribution and soil moisture on organic matter (SOM) decomposition, but also explicitly models root competition for water and the water compensation processes. To address the interactions between C and N processes, it models the soil inorganic mater processes, such as N mineralization/immobilization, denitrifica- tion/nitrification, and N leaching, as well as the root competition for soil N. The model was parameterized for major plant functional types and evaluated against field observations.展开更多
The environmental effect of degraded ecosystem's vegetation restoration in low subtropical China was studied. Results indicated that the vegetation recovery on degraded lands significantly ameliorates surrounding ...The environmental effect of degraded ecosystem's vegetation restoration in low subtropical China was studied. Results indicated that the vegetation recovery on degraded lands significantly ameliorates surrounding environment, increases species diversity, improves soil structure, raises soil fertility, enhances productivity, and promotes regional agricultural production and social economic development dramatically. Through the combining engineering and biological measures, the restoration of degraded ecosystem in low subtropical area is possible and economical. The restoration experience in Xiaoliang, Wuhua and other sites are valuable for other degraded subtropical area was introduced.展开更多
Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment...Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index(MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways(RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model.Results:(1) Future(2017–2100) climate change will leave 7.4%(under RCP 4.5) and 57.4% of(under RCP 8.5) of areas under high or very high vulnerable climate exposure;(2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage(vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability;(3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future;(4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid-and highvulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively.Conclusion: Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.展开更多
The carbon cycle of terrestrial ecosystems is influenced by global climate change and human activities.Using remote sensing data and land cover products,the spatio-temporal variation characteristics and trends of NEP ...The carbon cycle of terrestrial ecosystems is influenced by global climate change and human activities.Using remote sensing data and land cover products,the spatio-temporal variation characteristics and trends of NEP in the Yangtze River Delta from 2000 to 2020 were analyzed based on the soil respiration model.The driving influences of ecosystem structure evolution,temperature,rainfall,and human activities on NEP were studied.The results show that the NEP shows an overall distribution pattern of high in the southeast and low in the northwest.The area of carbon sinks is larger than that of the carbon sources.NEP spatial heterogeneity is significant.NEP change trend is basically unchanged or significantly better.The future change trend in most areas will be continuous decrease.Compared with temperature,NEP are more sensitive to precipitation.The positive influence of human activities on NEP is mainly observed in north-central Anhui and northern Jiangsu coastal areas,while the negative influence is mainly found in highly urbanized areas.In the process of ecosystem structure,the contribution of unchanged areas to NEP change is greater than that of changed areas.展开更多
In the last few decades, the Loess Plateau had experienced an extensive vegetation restoration to reduce soil erosion and to improve the degraded ecosystems. However, the dynamics of ecosystem carbon stocks with veget...In the last few decades, the Loess Plateau had experienced an extensive vegetation restoration to reduce soil erosion and to improve the degraded ecosystems. However, the dynamics of ecosystem carbon stocks with vegetation restoration in this region are poorly understood. This study examined the changes of carbon stocks in mineral soil (0-100 cm), plant biomass and the ecosystem (plant and soil) following vegetation restoration with different models and ages. Our results indicated that cultivated land returned to native vegetation (natural restoration) or artificial forest increased ecosystem carbon sequestration. Tree plantation sequestered more carbon than natural vegetation succession over decades scale due to the rapid increase in biomass carbon pool. Restoration ages had different effects on the dynamics of biomass and soil carbon stocks. Biomass carbon stocks increased with vegetation restoration age, while the dynamics of soil carbon stocks were affected by sampling depth. Ecosystem carbon stocks consistently increased after tree plantation regardless of the soil depth; but an initial decrease and then increase trend was observed in natural restoration chronosequences with the soil sampling depth of 0-100 cm. Moreover, there was a time lag of about 15-30 years between biomass production and soil carbon sequestration in 0-100 cm, which indicated a long-term effect of vegetation restoration on deeper soil carbon sequestration.展开更多
Ecosystem service values(ESV)are strongly influenced by the vegetation cover,which is heterogeneous across different vegetation types.We develop a dynamic evaluation model of ESV for Wuyishan National Park Pilot adjus...Ecosystem service values(ESV)are strongly influenced by the vegetation cover,which is heterogeneous across different vegetation types.We develop a dynamic evaluation model of ESV for Wuyishan National Park Pilot adjusted by the rate of inflation and the fractional vegetation cover,which is calculated by an enhanced vegetation index from 2000 to 2018.The spatio-temporal variation of vegetation was also examined.The results demonstrated that:(1)the unit area of ecosystem service values adjusted by vegetation cover(ESVVC)shows a gradient of forest>tea plantation>grassland>cropland,and the major ecosystem services provided by forests include soil formation and conservation,climate regulation,and biodiversity maintenance;(2)the ESV_(VC) increased to 2.1 billion yuan(The reference rate announced by the People’s Bank of China is the US dollar to 6.42 Yuan per dollar.)from 2000 to 2018.Higher and lower ESV_(VC) are predominant in the northwest and southeast region,respectively.In addition,changes of ecological protection structures and human disturbances negatively affected vegetation cover,leading to a decreased ESVVC from 2000 to 2005 in the Jiuqu Stream Ecological Protection Area and the Wuyishan National Scenic Spot.The implementation of ecological protection policies from 2010 to 2018 enhanced the ESV_(VC) in the study area;and,(3)the ESVVC is highest in the southeast and 25°–35°area with altitudes of 800–1000 m.Our model can provide timely and helpful information of changes in ESV for use in ecological corridor design and ecological security monitoring.展开更多
This paper concluded the vegetation restoration technique system in the arid-hot valleys and studied the anti-erosion function, environmental function and biological diversity effects of vegetation restoration on the ...This paper concluded the vegetation restoration technique system in the arid-hot valleys and studied the anti-erosion function, environmental function and biological diversity effects of vegetation restoration on the ecosystem in the arid-hot valleys. The results showed that the soil erodibility decreased significantly after the vegetation restoration. The climate environment of the small watershed had a great improvement after the vegetation restoration, of which the temperature decreased, the humidity increased, the harsh environment of dry and hot in this region changed. The studies of the ecosystem biodiversity were mainly on the analysis of the relations between biodiversity and ecological function of the artificial ecological forest pattern and the natural enclosed treatment mode on the severely of degraded land. It could conclude that the natural enclosed treatment mode is helpful to the biodiversity of the ecosystem and the improvement and stability of the ecosystem, and Leucaena artificial forest restoration pattern reduced the species diversity but optimized the ecological function. Therefore, as to the severely and extremely severely degraded ecosystem in the arid-hot valleys, Leucaena pattern of gully control and natural enclosed treatment mode are the relatively optimal choices.展开更多
Soil plays an important role in desert ecosystem, and is vital in constructing a steady desert ecosystem. The management and restoration of desertified land have been the focus of much discussion. The soil in Shapotou...Soil plays an important role in desert ecosystem, and is vital in constructing a steady desert ecosystem. The management and restoration of desertified land have been the focus of much discussion. The soil in Shapotou desert region has developed remarkably since artificial sand-binding vegetation established in 1946. The longer the period of dune stabilization, the greater the thickness of microbiotic crusts and subsoil. Meanwhile, proportion of silt and clay increased significantly, and soil bulk density declinced. The content of soil organic matter, N, P, and K similarly increased. Therefore, soil has developed from aeolian sand soil to Calcic-Orthic aridisols. This paper discusses the effects brought about by dust, microbiotic soil crust and soil microbes on soil-forming process. Then, we analyzed the relation between soil formation and sand-binding vegetation evolution, in order to provide a baseline for both research on desert ecosystem recovery and ecological environment governance in arid and semi-arid areas.展开更多
Understanding the controls on seasonal variation of energy partitioning and separation between canopy and soil surface are important for qualifying the vegetation feedback to climate system.Using observed day-to-day v...Understanding the controls on seasonal variation of energy partitioning and separation between canopy and soil surface are important for qualifying the vegetation feedback to climate system.Using observed day-to-day variations of energy balance components including net radiation,sensible heat flux,latent heat flux ground heat flux,and meteorological variables combined with an energy-balanced two-source model,energy partitioning were investigated at six sites in Heihe River Basin from 2014 to 2016.Bowen ratio(β) among the six sites exhibited significant seasonal variations while showed smaller inter-annual fluctuations.All ecosystems exhibit a "U-shaped" pattern,characterized by smaller value of β in growing season,with a minimum value in July,and fluctuating day to day.During the growing season,average Bowen ratio was the highest for the alpine swamp meadow(0.60 ± 0.30),followed by the desert riparian forest Populus euphratica(0.47 ± 0.72),the alpine desert(0.46 ± 0.10),the Tamarix ramosissima desert riparian shrub ecosystem(0.33 ± 0.57),alpine meadow ecosystem(0.32 ± 0.17),and cropland ecosystem(0.27 ± 0.46).The agreement of Bowen ratio between simulated and observed values demonstrated that the two-source model is a promising tool for energy partitioning and separation between canopy and soil surface.The importance of biophysical control explains the convergence of seasonal and annual patterns of Bowen ratio for all ecosystems,and the changes in Bowen ratio showed divergence among varied ecosystems because of different physiological responses to energy flow pathways between canopy and soil surface.展开更多
The types,frequency,and intensity of human interference with forests markedly affect the vegetation dynamics.Assessment of the impact of anthropogenic disturbances on forest diversity and structure is one of the centr...The types,frequency,and intensity of human interference with forests markedly affect the vegetation dynamics.Assessment of the impact of anthropogenic disturbances on forest diversity and structure is one of the central issues related to human behaviour and forest ecosystems and management.Both species diversity and density are very sensitive to local anthropogenic disturbance,which can be reduced depending on land-use systems.We used 10 line transects of 500 x 10 m to record and measure all plants >10 cm girth in some of the remaining forests surrounding villages in Tripura,Northeast India.To predict the effects of anthropogenic pressure on species richness and forest structure,we recorded and scored all ongoing disturbances in all transects of the forests.Although our study did not show any significant effects on the mean number of species,all diversity indices were significantly affected by disturbance.Total stem density(F = 128.60,p < 0.0001) and basal area(F = 65.30,p < 0.0001) of the forest stands were significantly affected by disturbance.Disturbance significantly(F= 84.81,p < 0.0001) impacts the abundance of mature voluminous trees removed by extensive illegal logging.Further,stem density at the middle(F= 10.01,p < 0.05) and upper(F= 131.70,p < 0.0001) canopy stories was also reduced by high disturbance intensity.The present analysis will be useful to policy-makers and planners for implementation of sustainable forest management at both the local and regional scale.展开更多
Terrestrial ecosystems heavily depend on vegetation,which responds to carbon dioxide(CO_(2))fertilization in hot and humid regions.The subtropical humid karst region is a hot and humid region;whether and to what exten...Terrestrial ecosystems heavily depend on vegetation,which responds to carbon dioxide(CO_(2))fertilization in hot and humid regions.The subtropical humid karst region is a hot and humid region;whether and to what extent CO_(2)fertilization affects vegetation changes in such regions remains unclear.In this study,we investigated the degree to which CO_(2)fertilization influences vegetation changes,along with their spatial and temporal differences,in the subtropical humid karst region using time-lag effect analysis,a random forest model,and multiple regression analysis.Results showed that CO_(2)fertilization plays an important role in vegetation changes,exhibiting clear spatial variations across different geomorphological zones,with its degree of influence ranging mainly between 11%and 25%.The highest contribution of CO_(2)fertilization was observed in the karst basin and non-karstic region,whereas the lowest contribution was found in the karst plateau region.Previous studies have primarily attributed vegetation changes in subtropical humid karst region to ecological engineering,leading to an overestimation of its contribution to these changes.The findings of this study enhance the understanding of the mechanism of vegetation changes in humid karst region and provide theoretical and practical insights for ecological and environmental protection in these regions.展开更多
Understanding the characteristics and driving factors behind changes in vegetation ecosystem resilience is crucial for mitigating both current and future impacts of climate change. Despite recent advances in resilienc...Understanding the characteristics and driving factors behind changes in vegetation ecosystem resilience is crucial for mitigating both current and future impacts of climate change. Despite recent advances in resilience research, significant knowledge gaps remain regarding the drivers of resilience changes. In this study, we investigated the dynamics of ecosystem resilience across China and identified potential driving factors using the kernel normalized difference vegetation index(kNDVI) from 2000 to 2020. Our results indicate that vegetation resilience in China has exhibited an increasing trend over the past two decades, with a notable breakpoint occurring around 2012. We found that precipitation was the dominant driver of changes in ecosystem resilience, accounting for 35.82% of the variation across China, followed by monthly average maximum temperature(Tmax) and vapor pressure deficit(VPD), which explained 28.95% and 28.31% of the variation, respectively. Furthermore, we revealed that daytime and nighttime warming has asymmetric impacts on vegetation resilience, with temperature factors such as Tmin and Tmax becoming more influential, while the importance of precipitation slightly decreases after the resilience change point. Overall, our study highlights the key roles of water availability and temperature in shaping vegetation resilience and underscores the asymmetric effects of daytime and nighttime warming on ecosystem resilience.展开更多
Drought, as a recurring extreme climate event, affects the structure, function, and process of terrestrial ecosystems. Despite the increasing occurrence and intensity of the drought in the past decade in Southwestern ...Drought, as a recurring extreme climate event, affects the structure, function, and process of terrestrial ecosystems. Despite the increasing occurrence and intensity of the drought in the past decade in Southwestern China, the impacts of continuous drought events on vegetation in this region remain unclear. During 2001–2012, Southwestern China experienced the severe drought events from 2009 to 2011. Our aim is to characterize drought conditions in the Southwestern China and explore the impacts on the vegetation condition and terrestrial ecosystem productivity. The Standardized Precipitation Index(SPI) was used to characterize drought area and intensity and a light-use efficiency model was used to explore the effect of drought on the terrestrial ecosystem productivity with Moderate Resolution Imaging Spectrometer(MODIS) data. The SPI captured the major drought events in Southwestern China during the study period, indicated that the 12-year period of this study included both ‘normal' precipitation years and two severe drought events in 2009–2010 and 2011. Results showed that vegetation greenness(Normalized Difference Vegetation Index, NDVI and Enhanced Vegetation Index, EVI) both declined in 2009/2010 drought, but the 2011 drought resulted in less declines of vegetation greenness and productivity due to shorten drought duration and rising temperature. Meanwhile, it was about 5 months lapse between drought events and maximum declines in vegetation greenness for 2009/2010 drought events. In addition, forest, grassland and cropland revealed significant different ecosystem responses to drought. It indicated that grassland showed an early sensitivity to drought, while cropland was the most sensitive to water deficit and forest was more resilient to drought. This study suggests that it is necessary to detect the difference responses of ecosystem to drought in a regional area with satellite data and ecosystem model.展开更多
This research aims to analyse the spatio-temporal changes of vegetation cover in coastal regions of Char Fasson and Galachipa Upazila, Bangladesh for a period of 30 years (1994-2024) based on Landsat satellite imagery...This research aims to analyse the spatio-temporal changes of vegetation cover in coastal regions of Char Fasson and Galachipa Upazila, Bangladesh for a period of 30 years (1994-2024) based on Landsat satellite imagery and NDVI. Through the evaluation of NDVI this paper classifies vegetation as no water/bare vegetation, slightly densed vegetation, moderately densed vegetation, and highly densed vegetation. The findings reveal significant fluctuations in vegetation cover: from 1994 to 2004, there has been an increase in vegetation density implying that afforestation has created more moderate and highly densed vegetation out of density vegetation. However, between 2004 and 2014, vegetation cover decreased because some cyclones, like Sidr and Aila, affected the coastal forest of Bangladesh. Other attempts to afforestation supported improved coverage from vegetation between 2014 and 2024. These findings provide clear evidence of the sustainable benefits of coastal afforestation in the reduction of coastal erosion and storm surges that affect vegetation and coasts. Knowledge gained in this research is highly useful to the environmental planners on recommendations for sustainable land uses and preservation to build up ecological stability in Bangladesh weak coastal areas.展开更多
Urbanization radically alters the climatic environment and landscape patterns of urban areas,but its impact on the carbon sequestration capacity of vegetation remains uncertain.Given the limitations of current small-s...Urbanization radically alters the climatic environment and landscape patterns of urban areas,but its impact on the carbon sequestration capacity of vegetation remains uncertain.Given the limitations of current small-scale ground-based in situ experiments,the response of vegetation carbon sequestration capacity to urbanization and the factors influencing it remain unclear at the global scale.Using multisource remote sensing data,we quanti-fied and differentiated the direct and indirect impacts of urbanization on the carbon sequestration capacity of vegetation in 508 large urban areas globally from 2000 to 2020.The results revealed that the direct impacts of urbanization were generally negative.However,446 cities experienced an indirect enhancement in vegetation carbon sequestration capacity during urbanization,averaging 19.6%globally and offsetting 14.7%of the di-rect loss due to urbanization.These positive indirect effects were most pronounced in environments with limited hydrothermal conditions and increased most in densely populated temperate and cold regions.Furthermore,indi-rect impacts were closely related to urbanization intensity,human footprint,and level of urban development.Our study enhances the understanding of how the carbon sequestration capacity of vegetation dynamically responds to changes in the urban environment,which is crucial for improving future urban vegetation management and building sustainable cities.展开更多
文摘This paper presents the latest developments in the re search progress on mechanisms by which natural plants and crops respond to the doubled concentration of CO2 in the atmosphere, resultant climatic change and the modeling of vegetation and eco-systems in China. In addition, it points out that the future study on global change and terrestrial ecosystems should stress m(?)iti-disciplinary teamwork and inter-discipline penetration. Finally, the paper emphasizes 10 research realms in the field to be enhanced in the future.
基金supported by the Swedish Research Council(Vetenskapsradet,Grant No.202203129)the Project of Youth Science and Technology Fund of Gansu Province(Grant No.24JRRA439)partially funded by the Swedish Research Council(Vetenskapsradet,Grant No.2022-06725)。
文摘This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.
基金supported by the National Natural Science Foundation of China(Nos.42107420,U23A20157,and U1910207)Shanxi Province Science Foundation for Young Scholars(No.20210302124363).
文摘Vegetation plays an important role in the environmental transport behavior of organic pollutants,however,the different roles of crops and natural vegetation have been ignored in most previous studies.In this study,we developed the BETR-Urban-Rural-Veg model to quantitatively evaluate the influences of both natural vegetation and crops on the multimedia transport processes of Phenanthrene(PHE)and Benzo(a)pyrene(BaP)in mainland of China.The geographic distribution of polycyclic aromatic hydrocarbon(PAH)emissions and concentrations were consistent,displaying higher levels in northern China while lower levels in southern China.Under seasonal simulations,for both natural vegetation and crops,PAH concentrations in winter and spring were 1.5 to 27-fold higher than in summer and autumn,especially for PHE.Owing to the higher leaf area index(LAI)of natural vegetation and harvesting of crops,the filter and sequestration effect of natural vegetation was stronger than crops,while the seasonal changes of PAH concentrations in crops were more significant than natural vegetation.Temperature,precipitation rates and LAI might have important influences on seasonal concentrations and overall persistence of PAHs.PHE was more sensitive to the impacts of seasonal environmental parameters.Under different landscape scenarios,average annual PAH concentrations in natural vegetation were always a little higher than those in crops,and the overall persistence of BaP was greatly affected increasing by 15.15%-16.47%.This improved model provides a useful tool for environmental management.The results of this study are expected to support land use plans and decision-making in China's mainland.
基金This research was supported by National Natural Science Foundation of China (No: 40473054)Agricultural Technological Production Translation of Science and Technology of Ministry (No:05EFN216600446).
文摘A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alpine tundra vegetation-LA, Typical alpine tundra vegetation-TA, Meadow alpine tundra vegetation-MA, and Swamp alpine tundra vegetation-SA) on alpine tundra of Changbai Mountains, Jilin Province, China in growing seasons of 2003, 2004 and 2005. The biomass of 43 mono-species and soil nutrients in alpine tundra ecosystem were also investigated. Dominant species from Ericaceae (such as Rhododendron chrysanthum and Vaccinium jliginosum var. alpinum) were taken to analyze organ biomass distribution. Result showed that the biomass and elevation had a significant correlation (Biomass-237.3 in(Elevation) +494.36; R^2=0.8092; P〈0.05). No significant differences were found in phosphorus and sulphur concentrations of roots, stems and leaves among the five vegetation types. There were significant differences in nitrogen and phosphorus stocks of roots, stems and leaves and in sulphur stock of stems and leaves among TA, MA, and SA vegetation types (p〈0.05). The nutrient stock of five vegetations was averagely 72.46 kg.hm^-2, of which N, P, S were 48.55, 10.33 and 13.61 kg·hm^-2, respectively. Soil N and S concentrations in meadow alpine tundra soil type was significantly higher than those in other four soil types (Cold desert alpine tundra soil, Lithic alpine tundra soil, Peat alpine tundra soil, and Gray alpine tundra soil). Phosphorous concentration in SA type was higher (p〈0.05) than in other types. Soil nutrient stock (0-20cm) was averagely 39.59 t.hm^-2, of which N, P, S were 23.74, 5.86, 9.99 t·hm^-2, respectively.
基金National Natural Science Foundation of China No.30070083+1 种基金 Ministry of Education of China No.2001DXM700012
文摘According to differences in vegetation types and their coverage, combining the latest research, using theory and method on the value of vegetation ecosystem services, this paper not only calculated goods produced by different types of vegetation but also estimated the value of various vegetation ecosystem services and set up database, GIS and eco-account of vegetation ecosystem. The result was as follows: the value of vegetation's primary productivity, soil and fertility conservation, water conservation, CO 2 fixation and O 2 release was 199.6 billion yuan/a, 22.64 billion yuan/a, 22.66 billion yuan/a, 352.24 billion yuan/a and 374.19 billion yuan/a, respectively. The total value of ecosystem services was 968.33 billion yuan/a. The temperate deciduous broad-leaved forest had the highest contribution rate, accounting for 16.42%. The result of value can reflect regional reality more exactly.
基金supported by the International Science & Technology Cooperation Program of China (2010DFA92720-10)the "Hundred Talents Program" of the Chinese Academy of Sciences (Y174131001)supported by the National Basic Research Program of China (2009CB825105)
文摘Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and atmospheric composition. Vegetation dynamic models has been applied in global change studies, but the com- plex interactions among the carbon (C), water, and nitrogen (N) cycles have not been adequately addressed in the current models. In this study, a process-based vegetation dynamic model was developed to study the responses of dryland ecosystems to environmental changes, emphasizing on the interactions among the C, water, and N proc- esses. To address the interactions between the C and water processes, it not only considers the effects of annual precipitation on vegetation distribution and soil moisture on organic matter (SOM) decomposition, but also explicitly models root competition for water and the water compensation processes. To address the interactions between C and N processes, it models the soil inorganic mater processes, such as N mineralization/immobilization, denitrifica- tion/nitrification, and N leaching, as well as the root competition for soil N. The model was parameterized for major plant functional types and evaluated against field observations.
文摘The environmental effect of degraded ecosystem's vegetation restoration in low subtropical China was studied. Results indicated that the vegetation recovery on degraded lands significantly ameliorates surrounding environment, increases species diversity, improves soil structure, raises soil fertility, enhances productivity, and promotes regional agricultural production and social economic development dramatically. Through the combining engineering and biological measures, the restoration of degraded ecosystem in low subtropical area is possible and economical. The restoration experience in Xiaoliang, Wuhua and other sites are valuable for other degraded subtropical area was introduced.
基金supported by the National Key Research and Development Program of China (No. 2016YFC0502104,No. 2017YFC0503901)the National Natural Science Foundation of China (No. 31870430)。
文摘Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index(MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways(RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model.Results:(1) Future(2017–2100) climate change will leave 7.4%(under RCP 4.5) and 57.4% of(under RCP 8.5) of areas under high or very high vulnerable climate exposure;(2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage(vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability;(3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future;(4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid-and highvulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively.Conclusion: Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.
基金National Key R&D Program of China,No.2018YFD1100101。
文摘The carbon cycle of terrestrial ecosystems is influenced by global climate change and human activities.Using remote sensing data and land cover products,the spatio-temporal variation characteristics and trends of NEP in the Yangtze River Delta from 2000 to 2020 were analyzed based on the soil respiration model.The driving influences of ecosystem structure evolution,temperature,rainfall,and human activities on NEP were studied.The results show that the NEP shows an overall distribution pattern of high in the southeast and low in the northwest.The area of carbon sinks is larger than that of the carbon sources.NEP spatial heterogeneity is significant.NEP change trend is basically unchanged or significantly better.The future change trend in most areas will be continuous decrease.Compared with temperature,NEP are more sensitive to precipitation.The positive influence of human activities on NEP is mainly observed in north-central Anhui and northern Jiangsu coastal areas,while the negative influence is mainly found in highly urbanized areas.In the process of ecosystem structure,the contribution of unchanged areas to NEP change is greater than that of changed areas.
基金funded by the National Natural Science Foundation of China(4130161041501094+3 种基金41330858)the Key Research Program of the Chinese Academy of Sciences(KZZD-EW-04)the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ5170)the open foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(A318009902-1510)
文摘In the last few decades, the Loess Plateau had experienced an extensive vegetation restoration to reduce soil erosion and to improve the degraded ecosystems. However, the dynamics of ecosystem carbon stocks with vegetation restoration in this region are poorly understood. This study examined the changes of carbon stocks in mineral soil (0-100 cm), plant biomass and the ecosystem (plant and soil) following vegetation restoration with different models and ages. Our results indicated that cultivated land returned to native vegetation (natural restoration) or artificial forest increased ecosystem carbon sequestration. Tree plantation sequestered more carbon than natural vegetation succession over decades scale due to the rapid increase in biomass carbon pool. Restoration ages had different effects on the dynamics of biomass and soil carbon stocks. Biomass carbon stocks increased with vegetation restoration age, while the dynamics of soil carbon stocks were affected by sampling depth. Ecosystem carbon stocks consistently increased after tree plantation regardless of the soil depth; but an initial decrease and then increase trend was observed in natural restoration chronosequences with the soil sampling depth of 0-100 cm. Moreover, there was a time lag of about 15-30 years between biomass production and soil carbon sequestration in 0-100 cm, which indicated a long-term effect of vegetation restoration on deeper soil carbon sequestration.
基金This study was supported and funded by the projects of National Natural Science Foundation of China(No.41201100)the projects of Science and Technology Innovation Foundation of FAFU,China(No.KFA18038A).
文摘Ecosystem service values(ESV)are strongly influenced by the vegetation cover,which is heterogeneous across different vegetation types.We develop a dynamic evaluation model of ESV for Wuyishan National Park Pilot adjusted by the rate of inflation and the fractional vegetation cover,which is calculated by an enhanced vegetation index from 2000 to 2018.The spatio-temporal variation of vegetation was also examined.The results demonstrated that:(1)the unit area of ecosystem service values adjusted by vegetation cover(ESVVC)shows a gradient of forest>tea plantation>grassland>cropland,and the major ecosystem services provided by forests include soil formation and conservation,climate regulation,and biodiversity maintenance;(2)the ESV_(VC) increased to 2.1 billion yuan(The reference rate announced by the People’s Bank of China is the US dollar to 6.42 Yuan per dollar.)from 2000 to 2018.Higher and lower ESV_(VC) are predominant in the northwest and southeast region,respectively.In addition,changes of ecological protection structures and human disturbances negatively affected vegetation cover,leading to a decreased ESVVC from 2000 to 2005 in the Jiuqu Stream Ecological Protection Area and the Wuyishan National Scenic Spot.The implementation of ecological protection policies from 2010 to 2018 enhanced the ESV_(VC) in the study area;and,(3)the ESVVC is highest in the southeast and 25°–35°area with altitudes of 800–1000 m.Our model can provide timely and helpful information of changes in ESV for use in ecological corridor design and ecological security monitoring.
基金the National Science and Technology Supporting Program in the Eleventh Five-Year Plan of China(2006BAC01A11)the Natural Science Founda-tion of Yunnan Province (2006D0092M)
文摘This paper concluded the vegetation restoration technique system in the arid-hot valleys and studied the anti-erosion function, environmental function and biological diversity effects of vegetation restoration on the ecosystem in the arid-hot valleys. The results showed that the soil erodibility decreased significantly after the vegetation restoration. The climate environment of the small watershed had a great improvement after the vegetation restoration, of which the temperature decreased, the humidity increased, the harsh environment of dry and hot in this region changed. The studies of the ecosystem biodiversity were mainly on the analysis of the relations between biodiversity and ecological function of the artificial ecological forest pattern and the natural enclosed treatment mode on the severely of degraded land. It could conclude that the natural enclosed treatment mode is helpful to the biodiversity of the ecosystem and the improvement and stability of the ecosystem, and Leucaena artificial forest restoration pattern reduced the species diversity but optimized the ecological function. Therefore, as to the severely and extremely severely degraded ecosystem in the arid-hot valleys, Leucaena pattern of gully control and natural enclosed treatment mode are the relatively optimal choices.
基金supported by Project in the National Science & Technology Pillar Program (2600BAD26B02-1)
文摘Soil plays an important role in desert ecosystem, and is vital in constructing a steady desert ecosystem. The management and restoration of desertified land have been the focus of much discussion. The soil in Shapotou desert region has developed remarkably since artificial sand-binding vegetation established in 1946. The longer the period of dune stabilization, the greater the thickness of microbiotic crusts and subsoil. Meanwhile, proportion of silt and clay increased significantly, and soil bulk density declinced. The content of soil organic matter, N, P, and K similarly increased. Therefore, soil has developed from aeolian sand soil to Calcic-Orthic aridisols. This paper discusses the effects brought about by dust, microbiotic soil crust and soil microbes on soil-forming process. Then, we analyzed the relation between soil formation and sand-binding vegetation evolution, in order to provide a baseline for both research on desert ecosystem recovery and ecological environment governance in arid and semi-arid areas.
基金The Strategic Priority Research Program of Chinese Academy of Sciences,No.XDA20100102National Natural Science Foundation of China,No.41730854,No.41671019Projects by the State Key Laboratory of Earth Surface Processes and Resource Ecology
文摘Understanding the controls on seasonal variation of energy partitioning and separation between canopy and soil surface are important for qualifying the vegetation feedback to climate system.Using observed day-to-day variations of energy balance components including net radiation,sensible heat flux,latent heat flux ground heat flux,and meteorological variables combined with an energy-balanced two-source model,energy partitioning were investigated at six sites in Heihe River Basin from 2014 to 2016.Bowen ratio(β) among the six sites exhibited significant seasonal variations while showed smaller inter-annual fluctuations.All ecosystems exhibit a "U-shaped" pattern,characterized by smaller value of β in growing season,with a minimum value in July,and fluctuating day to day.During the growing season,average Bowen ratio was the highest for the alpine swamp meadow(0.60 ± 0.30),followed by the desert riparian forest Populus euphratica(0.47 ± 0.72),the alpine desert(0.46 ± 0.10),the Tamarix ramosissima desert riparian shrub ecosystem(0.33 ± 0.57),alpine meadow ecosystem(0.32 ± 0.17),and cropland ecosystem(0.27 ± 0.46).The agreement of Bowen ratio between simulated and observed values demonstrated that the two-source model is a promising tool for energy partitioning and separation between canopy and soil surface.The importance of biophysical control explains the convergence of seasonal and annual patterns of Bowen ratio for all ecosystems,and the changes in Bowen ratio showed divergence among varied ecosystems because of different physiological responses to energy flow pathways between canopy and soil surface.
文摘The types,frequency,and intensity of human interference with forests markedly affect the vegetation dynamics.Assessment of the impact of anthropogenic disturbances on forest diversity and structure is one of the central issues related to human behaviour and forest ecosystems and management.Both species diversity and density are very sensitive to local anthropogenic disturbance,which can be reduced depending on land-use systems.We used 10 line transects of 500 x 10 m to record and measure all plants >10 cm girth in some of the remaining forests surrounding villages in Tripura,Northeast India.To predict the effects of anthropogenic pressure on species richness and forest structure,we recorded and scored all ongoing disturbances in all transects of the forests.Although our study did not show any significant effects on the mean number of species,all diversity indices were significantly affected by disturbance.Total stem density(F = 128.60,p < 0.0001) and basal area(F = 65.30,p < 0.0001) of the forest stands were significantly affected by disturbance.Disturbance significantly(F= 84.81,p < 0.0001) impacts the abundance of mature voluminous trees removed by extensive illegal logging.Further,stem density at the middle(F= 10.01,p < 0.05) and upper(F= 131.70,p < 0.0001) canopy stories was also reduced by high disturbance intensity.The present analysis will be useful to policy-makers and planners for implementation of sustainable forest management at both the local and regional scale.
基金National Natural Science Foundation of China,No.41761003The Karst Science Research Center of Guizhou Province,No.U1812401。
文摘Terrestrial ecosystems heavily depend on vegetation,which responds to carbon dioxide(CO_(2))fertilization in hot and humid regions.The subtropical humid karst region is a hot and humid region;whether and to what extent CO_(2)fertilization affects vegetation changes in such regions remains unclear.In this study,we investigated the degree to which CO_(2)fertilization influences vegetation changes,along with their spatial and temporal differences,in the subtropical humid karst region using time-lag effect analysis,a random forest model,and multiple regression analysis.Results showed that CO_(2)fertilization plays an important role in vegetation changes,exhibiting clear spatial variations across different geomorphological zones,with its degree of influence ranging mainly between 11%and 25%.The highest contribution of CO_(2)fertilization was observed in the karst basin and non-karstic region,whereas the lowest contribution was found in the karst plateau region.Previous studies have primarily attributed vegetation changes in subtropical humid karst region to ecological engineering,leading to an overestimation of its contribution to these changes.The findings of this study enhance the understanding of the mechanism of vegetation changes in humid karst region and provide theoretical and practical insights for ecological and environmental protection in these regions.
基金National Key Research and Development Program,No.2021xjkk0303。
文摘Understanding the characteristics and driving factors behind changes in vegetation ecosystem resilience is crucial for mitigating both current and future impacts of climate change. Despite recent advances in resilience research, significant knowledge gaps remain regarding the drivers of resilience changes. In this study, we investigated the dynamics of ecosystem resilience across China and identified potential driving factors using the kernel normalized difference vegetation index(kNDVI) from 2000 to 2020. Our results indicate that vegetation resilience in China has exhibited an increasing trend over the past two decades, with a notable breakpoint occurring around 2012. We found that precipitation was the dominant driver of changes in ecosystem resilience, accounting for 35.82% of the variation across China, followed by monthly average maximum temperature(Tmax) and vapor pressure deficit(VPD), which explained 28.95% and 28.31% of the variation, respectively. Furthermore, we revealed that daytime and nighttime warming has asymmetric impacts on vegetation resilience, with temperature factors such as Tmin and Tmax becoming more influential, while the importance of precipitation slightly decreases after the resilience change point. Overall, our study highlights the key roles of water availability and temperature in shaping vegetation resilience and underscores the asymmetric effects of daytime and nighttime warming on ecosystem resilience.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFB0501501,2017YFB0504000)National Natural Science Foundation of China(No.41401110,31400393)
文摘Drought, as a recurring extreme climate event, affects the structure, function, and process of terrestrial ecosystems. Despite the increasing occurrence and intensity of the drought in the past decade in Southwestern China, the impacts of continuous drought events on vegetation in this region remain unclear. During 2001–2012, Southwestern China experienced the severe drought events from 2009 to 2011. Our aim is to characterize drought conditions in the Southwestern China and explore the impacts on the vegetation condition and terrestrial ecosystem productivity. The Standardized Precipitation Index(SPI) was used to characterize drought area and intensity and a light-use efficiency model was used to explore the effect of drought on the terrestrial ecosystem productivity with Moderate Resolution Imaging Spectrometer(MODIS) data. The SPI captured the major drought events in Southwestern China during the study period, indicated that the 12-year period of this study included both ‘normal' precipitation years and two severe drought events in 2009–2010 and 2011. Results showed that vegetation greenness(Normalized Difference Vegetation Index, NDVI and Enhanced Vegetation Index, EVI) both declined in 2009/2010 drought, but the 2011 drought resulted in less declines of vegetation greenness and productivity due to shorten drought duration and rising temperature. Meanwhile, it was about 5 months lapse between drought events and maximum declines in vegetation greenness for 2009/2010 drought events. In addition, forest, grassland and cropland revealed significant different ecosystem responses to drought. It indicated that grassland showed an early sensitivity to drought, while cropland was the most sensitive to water deficit and forest was more resilient to drought. This study suggests that it is necessary to detect the difference responses of ecosystem to drought in a regional area with satellite data and ecosystem model.
文摘This research aims to analyse the spatio-temporal changes of vegetation cover in coastal regions of Char Fasson and Galachipa Upazila, Bangladesh for a period of 30 years (1994-2024) based on Landsat satellite imagery and NDVI. Through the evaluation of NDVI this paper classifies vegetation as no water/bare vegetation, slightly densed vegetation, moderately densed vegetation, and highly densed vegetation. The findings reveal significant fluctuations in vegetation cover: from 1994 to 2004, there has been an increase in vegetation density implying that afforestation has created more moderate and highly densed vegetation out of density vegetation. However, between 2004 and 2014, vegetation cover decreased because some cyclones, like Sidr and Aila, affected the coastal forest of Bangladesh. Other attempts to afforestation supported improved coverage from vegetation between 2014 and 2024. These findings provide clear evidence of the sustainable benefits of coastal afforestation in the reduction of coastal erosion and storm surges that affect vegetation and coasts. Knowledge gained in this research is highly useful to the environmental planners on recommendations for sustainable land uses and preservation to build up ecological stability in Bangladesh weak coastal areas.
基金supported by the National Natural Science Foun-dation of China(Grants No.42471118 and 52078440)the Youth Innovation Promotion Association of CAS(Grant No.2021194).
文摘Urbanization radically alters the climatic environment and landscape patterns of urban areas,but its impact on the carbon sequestration capacity of vegetation remains uncertain.Given the limitations of current small-scale ground-based in situ experiments,the response of vegetation carbon sequestration capacity to urbanization and the factors influencing it remain unclear at the global scale.Using multisource remote sensing data,we quanti-fied and differentiated the direct and indirect impacts of urbanization on the carbon sequestration capacity of vegetation in 508 large urban areas globally from 2000 to 2020.The results revealed that the direct impacts of urbanization were generally negative.However,446 cities experienced an indirect enhancement in vegetation carbon sequestration capacity during urbanization,averaging 19.6%globally and offsetting 14.7%of the di-rect loss due to urbanization.These positive indirect effects were most pronounced in environments with limited hydrothermal conditions and increased most in densely populated temperate and cold regions.Furthermore,indi-rect impacts were closely related to urbanization intensity,human footprint,and level of urban development.Our study enhances the understanding of how the carbon sequestration capacity of vegetation dynamically responds to changes in the urban environment,which is crucial for improving future urban vegetation management and building sustainable cities.