The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technol...The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technolo-gies have been unable to eliminate these pollutants,resulting in their ongoing release into aquatic ecosystems.This study focuses on cloperastine(CPS),a cough suppressant and antihistamine medication.The environmental impact of CPS usage has become a concern,mainly due to its increased detection during the COVID-19 pandemic.CPS has been found in wastewater treatment facilities,effluents from senior living residences,river waters,and sewage sludge.However,the photosensitivity of CPS and its photodegradation profile remain largely unknown.This study investigates the photodegradation process of CPS under simulated tertiary treatment conditions using UV photolysis,a method commonly applied in some wastewater treatment plants.Several transformation prod-ucts were identified,evaluating their kinetic profiles using chemometric approaches(i.e.,curve fitting and the hard-soft multivariate curve resolution-alternating least squares(HS-MCR-ALS)algorithm)and calculating the reaction quantum yield.As a result,three different transformation products have been detected and correctly identified.In addition,a comprehensive description of the kinetic pathway involved in the photodegradation process of the CPS drug has been provided,including observed kinetic rate constants.展开更多
A monolithic integrated full-wave bridge rectifier consisted of horizontal Schottky-barrier diodes(SBD)is prepared based on 100 nm ultra-thinβ-Ga_(2)O_(3)and demonstrated the solar-blind UV(SUV)light-modulated charac...A monolithic integrated full-wave bridge rectifier consisted of horizontal Schottky-barrier diodes(SBD)is prepared based on 100 nm ultra-thinβ-Ga_(2)O_(3)and demonstrated the solar-blind UV(SUV)light-modulated characteristics.Under SUV light illumination,the rectifier has the excellent full-wave rectification characteristics for the AC input signals of 5,12,and 24 V with different frequencies.Further,experimental results confirmed the feasibility of continuously tuning the rectified output through SUV light-encoding.This work provides valuable insights for the development of optically programmable Ga_(2)O_(3)ACDC converters.展开更多
基金supported by the grants PID2020-113371RA-C22 and TED2021-130845A-C32,funded by MCIN/AEI/10.13039/501100011033.M.Marín-García,R.González-OlmosC.Gómez-Canela are members of the GESPA group(Grup d’Enginyeria i Simulacióde Processos Ambientals)at IQS-URL,which has been acknowledged as a Consolidated Research Group by the Government of Catalonia(No.2021-SGR-00321)+1 种基金In addition,M.Marín-García has been awarded a public grant for the Investigo Programme,aimed at hiring young job seekers to undertake research and innovation projects under the Recovery,Transformation,and Resilience Plan(PRTR),European Union Next Generation,for the year 2022,through the Government of Catalonia and the Spanish Ministry for Work and Social Economy(No.100045ID16)Ana Belén Cuenca for her support and expertise,which helped to confirm the proposed reaction mechanism involved in the UV photolysis of cloperastine.
文摘The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technolo-gies have been unable to eliminate these pollutants,resulting in their ongoing release into aquatic ecosystems.This study focuses on cloperastine(CPS),a cough suppressant and antihistamine medication.The environmental impact of CPS usage has become a concern,mainly due to its increased detection during the COVID-19 pandemic.CPS has been found in wastewater treatment facilities,effluents from senior living residences,river waters,and sewage sludge.However,the photosensitivity of CPS and its photodegradation profile remain largely unknown.This study investigates the photodegradation process of CPS under simulated tertiary treatment conditions using UV photolysis,a method commonly applied in some wastewater treatment plants.Several transformation prod-ucts were identified,evaluating their kinetic profiles using chemometric approaches(i.e.,curve fitting and the hard-soft multivariate curve resolution-alternating least squares(HS-MCR-ALS)algorithm)and calculating the reaction quantum yield.As a result,three different transformation products have been detected and correctly identified.In addition,a comprehensive description of the kinetic pathway involved in the photodegradation process of the CPS drug has been provided,including observed kinetic rate constants.
基金supported by Natural Science Basic Research Program of Shaanxi Province of China(Grant No.2023JCYB574)National Natural Science Foundation of China(Grant No.62204203)。
文摘A monolithic integrated full-wave bridge rectifier consisted of horizontal Schottky-barrier diodes(SBD)is prepared based on 100 nm ultra-thinβ-Ga_(2)O_(3)and demonstrated the solar-blind UV(SUV)light-modulated characteristics.Under SUV light illumination,the rectifier has the excellent full-wave rectification characteristics for the AC input signals of 5,12,and 24 V with different frequencies.Further,experimental results confirmed the feasibility of continuously tuning the rectified output through SUV light-encoding.This work provides valuable insights for the development of optically programmable Ga_(2)O_(3)ACDC converters.