The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and med...The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry.展开更多
As light metals,aluminum and magnesium have been widely used in automotive manufacturing,but the welding of Al/Mg joints is facing challenges.However,it is difficult to obtain high-quality aluminum/magnesium joints wi...As light metals,aluminum and magnesium have been widely used in automotive manufacturing,but the welding of Al/Mg joints is facing challenges.However,it is difficult to obtain high-quality aluminum/magnesium joints with traditional arc welding methods.As a solid-phase welding technology,ultrasonic metal welding has the characteristics of high welding efficiency and less welded defects.It is also suitable for welding sound metal bonds.Aluminum and magnesium ultrasonic welding has become a research hotspot.Therefore,the evolution of microstructures and mechanical performance of Al/Mg and multi-layer Al/Mg ultrasonic welding,and the new study works,including the molecular dynamic simulation of Al/Mg ultrasonic welding and hybrid based on ultrasonic welding are summarized.Furthermore,several promising research directions are proposed to guide in-depth investigations into the ultrasonic welding of Al/Mg dissimilar joints.展开更多
The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further impr...The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.展开更多
Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milli...Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.展开更多
The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analys...The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.展开更多
This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Associat...This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-Zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.展开更多
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ...The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure.展开更多
BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degradi...BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.展开更多
Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we...Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids.展开更多
A low rare-earth containing ZEK100-O magnesium alloy was welded to AA1230-clad high-strength AA2024-T3 aluminum alloy via solidstate ultrasonic spot welding(USW)to evaluate the microstructure,tensile lap shear strengt...A low rare-earth containing ZEK100-O magnesium alloy was welded to AA1230-clad high-strength AA2024-T3 aluminum alloy via solidstate ultrasonic spot welding(USW)to evaluate the microstructure,tensile lap shear strength,and fatigue properties.The tensile strength increased with increasing welding energy,peaked at a welding energy of 1000 J,and then decreased due to the formation of an increasingly thick diffusion layer mainly containing Al12Mg17intermetallic compound at higher energy levels.The peak tensile lap shear strength attained at 1000 J was attributed to the optimal inter-diffusion between the magnesium alloy and softer AA1230-clad Al layer along with the presence of‘fishhook'-like mechanical interlocks at the weld interface and the formation of an indistinguishable intermetallic layer.The dissimilar joints welded at 1000 J also exhibited a longer fatigue life than other Mg-Al dissimilar joints,suggesting the beneficial role of the softer clad layer with a better intermingling capacity during USW.While the transverse-through-thickness(TTT)failure mode prevailed at lower cyclic loading levels,interfacial failure was the predominant mode of fatigue failure at higher cyclic loads,where distinctive fatigue striations were also observed on the fracture surface of the softer clad Al layer.This was associated with the presence of opening stress and bending moment near the nugget edge despite the tension-tension lap shear cyclic loading applied.展开更多
The Mg-9Li-1Zn(LZ91)alloy was subjected to an ultrasonic surface rolling process(USRP)with varying passes for the purpose of modifying its surface state.The USRP transformed surface residual stress from initial tensil...The Mg-9Li-1Zn(LZ91)alloy was subjected to an ultrasonic surface rolling process(USRP)with varying passes for the purpose of modifying its surface state.The USRP transformed surface residual stress from initial tensile stress to compressive stress,decreasing the surface roughness and increasing the ratio of the β-Li phase.The USRPed LZ91 sample(3 passes)showed superior corrosion resistance,with the corrosion current density changing from 57.11 to 24.70μA cm^(-2),and the polarization resistance increasing from 576.3 to 1146.1Ωcm^(2).According to the corrosion procedure evaluations,in situ observation revealed that the LZ91 alloy initially experiences pitting,which subsequently develops into cracking.The substantial area coverage of the β-Li phase facilitates the formation of a protective film on the surface,effectively delaying localized corrosion.展开更多
Unmanned aerial vehicle(UAV)swarm network consisting of a collection of micro UAVs can be used for many applications.It is well established that packet routing is a fundamental problem to achieve UAV collaboration.How...Unmanned aerial vehicle(UAV)swarm network consisting of a collection of micro UAVs can be used for many applications.It is well established that packet routing is a fundamental problem to achieve UAV collaboration.However,the highly dynamic nature of UAVs,frequently changing network topologies and security issues,poses significant challenges to packet forwarding in UAV networks.The existing topology-based routing protocols are not well suited in UAV network due to their high controlling overhead or excessive end-to-end delay.Geographic routing is regarded as a promising solution,as it only requires local information.In order to enhance the accuracy and security of geographic routing in highly dynamic UAV network,in this paper,we propose a new predictive geographic(PGeo)routing strategy with location verification.First,a detection mechanism is adopted to recognize malicious UAVs falsifying their location.Then,an accurate average service time of a packet in the medium access control(MAC)layer is derived to assist location prediction.The proposed delay model can provide a theoretical basis for future work,and our simulation results reveal that PGeo outstrips the existing geographic routing protocols in terms of packet delivery ratio in the presence of location spoofing behavior.展开更多
This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Associ...This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.展开更多
A novel method is developed by utilizing the fractional frequency based multirange rulers to precisely position the passive inter-modulation(PIM)sources within radio frequency(RF)cables.The proposed method employs a s...A novel method is developed by utilizing the fractional frequency based multirange rulers to precisely position the passive inter-modulation(PIM)sources within radio frequency(RF)cables.The proposed method employs a set of fractional frequencies to create multiple measuring rulers with different metric ranges to determine the values of the tens,ones,tenths,and hundredths digits of the distance.Among these rulers,the one with the lowest frequency determines the maximum metric range,while the one with the highest frequency decides the highest achievable accuracy of the position system.For all rulers,the metric accuracy is uniquely determined by the phase accuracy of the detected PIM signals.With the all-phase Fourier transform method,the phases of the PIM signals at all fractional frequencies maintain almost the same accuracy,approximately 1°(about 1/360 wavelength in the positioning accuracy)at the signal-to-noise ratio(SNR)of 10 d B.Numerical simulations verify the effectiveness of the proposed method,improving the positioning accuracy of the cable PIM up to a millimeter level with the highest fractional frequency operating at 200 MHz.展开更多
Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE...Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE) simulation. The quantitative model of atomic diffusion, which is related to the ultrasonic bonding parameters, time and distance, is established to calculate the atomic diffusion of the Al-Au interface. The maximum relative error between the calculated and experimental fraction of Al atom is 7.35%, indicating high prediction accuracy of this model. During the process of ultrasonic bonding, Au8Al3 is the main intermetallic compound (IMC) at the Al-Au interface. With larger bonding forces, higher ultrasonic powers and longer bonding time, it is more difficult to remove the oxide particles from the Al-Au interface, which hinders the atomic diffusion. Therefore, the complicated stress state and the existence of oxide particles both promotes the formation of holes. The shear strength of Al-Au ultrasonic bonding increases with increasing bonding force, ultrasonic power and bonding time. However, combined with the presence of holes at especial parameters, the optimal ultrasonic bonding parameter is confirmed to be a bonding force of 23 gf, ultrasonic power of 75 mW and bonding time of 21 ms.展开更多
Ultrasonic elliptical vibration cutting(UEVC)with clockwise elliptical vibration has made notable achievements in precision machining;however,its critical cutting speed limits its application to low-speed machining ta...Ultrasonic elliptical vibration cutting(UEVC)with clockwise elliptical vibration has made notable achievements in precision machining;however,its critical cutting speed limits its application to low-speed machining tasks.Meanwhile,rotary ultrasonic elliptical machining(RUEM)with clockwise elliptical vibration has been validated as an effective high-speed cutting technology.Unfortunately,conventional RUEM leads to increased surface roughness.To address this issue and enhance machining quality,we propose a novel RUEM method employing an anticlockwise vibration direction,called anticlockwise rotary ultrasonic elliptical machining(ARUEM).The mechanisms of surface formation and subsurface strengthening for ARUEM are analyzed.Experimental validations were performed on Ti-6Al-4V alloy,revealing that ARUEM achieved substantially lower ridge heights and up to a 50%reduction in surface roughness compared to conventional RUEM.Additionally,relative to conventional milling,ARUEM resulted in up to 122.6%thicker plastic deformation layers,53.4%higher surface residual compressive stress,and 19.3%greater surface micro-hardness.This study showcases a promising method for high-performance milling of Ti-6Al-4V,offers new insights into RUEM by examining the influence of vibration direction,and enhances understanding of surface formation and subsurface strengthening in the ARUEM method.展开更多
The combination of ultrasonic and acid fracturing fluid can strengthen the modification effect on the micropore structure of the coal matrix,thereby enhancing the efficiency of the acid fracturing process.In this rese...The combination of ultrasonic and acid fracturing fluid can strengthen the modification effect on the micropore structure of the coal matrix,thereby enhancing the efficiency of the acid fracturing process.In this research,acetic acid was utilized to formulate acid fracturing fluids with varying concentrations,and the evolutionary traits of both the acid fracturing fluids and ultrasonic waves in relation to coal samples were investigated.The functional group structure,mineral composition,micropore structure and surface morphology of coal samples were characterized by FTIR,XRD,N_(2)adsorption at low temperature and SEM-EDS.The results showed that aromatics(I)and branching parameters(CH_(2)/CH_(3))were reduced by 81.58%and 88.67%,respectively,after 9%acetic acid treatment.Acetic acid can dissolve carbonates and clay minerals in coal,create new pores,and increase porosity,pore volume and pore fractal dimension.After modification by 7%acetic acid,the pore volume increased by 5.7 times.SEM observation shows that the diameter of coal surface holes increases,EDS scanning shows that the content of mineral elements in coal decreases,the connectivity of coal holes increases,and the holes expand.The findings of this research offer theoretical direction for optimizing ultrasonic-enhanced acid fracturing fluid modification.展开更多
In this study,the influence of focused ultrasonic vibration(UV)in the arc column with a non-consumable electrode on the electro-physical characteristics of the arc,near-electrode voltage drops,and the shape and struct...In this study,the influence of focused ultrasonic vibration(UV)in the arc column with a non-consumable electrode on the electro-physical characteristics of the arc,near-electrode voltage drops,and the shape and structure of the arc column discharge were invest-igated.It was determined that a focused ultrasonic field in the welding arc column leads to an increase in the arc discharge voltage.Focusing UV on the electrode and in the welding bath does not increase arc voltage.In contrast,the presence of a focused ultrasonic field in the electrode region of the welding arc increases its voltage by 0.9 V.Under the influence of UV,the voltage drop in the cath-ode region on the arc increases by approximately 2 V,and it increases by 0.8 V in the anode region.However,the voltage in the arc column decreases slightly.The impact of a focused ultrasonic field reduces the arc diameter in the anode region and the column.In contrast,near the cathode region,the diameter increases,indicating a change in the nature of the cathodic flow of charged particles in this area.展开更多
Accurate and rapid determination of source locations is of great significance for surface microseismic monitoring.Traditional methods,such as diffraction stacking,are time-consuming and challenging for real-time monit...Accurate and rapid determination of source locations is of great significance for surface microseismic monitoring.Traditional methods,such as diffraction stacking,are time-consuming and challenging for real-time monitoring.In this study,we propose an approach to locate microseismic events using a deep learning algorithm with surface data.A fully convolutional network is designed to predict source locations.The input data is the waveform of a microseismic event,and the output consists of three 1D Gaussian distributions representing the probability distribution of the source location in the x,y,and z dimensions.The theoretical dataset is generated to train the model,and several data augmentation methods are applied to reduce discrepancies between the theoretical and field data.After applying the trained model to field data,the results demonstrate that our method is fast and achieves comparable location accuracy to the traditional diffraction stacking location method,making it promising for real-time microseismic monitoring.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415 and 52205475)the Science Center for Gas Turbine Project(No.P2023-B-IV-003-001)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Huaqiao University Engineering Research Center of Brittle Materials Machining(MOE,2023IME-001)。
文摘The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry.
基金supported by Key Projects of Science and Technology Research Plan of Hubei Provincial Department of Education(D20221306)the National Natural Science Foundation of China(51605103)Key Project of Hubei Provincial Science and Technology Department(2020BAB055).
文摘As light metals,aluminum and magnesium have been widely used in automotive manufacturing,but the welding of Al/Mg joints is facing challenges.However,it is difficult to obtain high-quality aluminum/magnesium joints with traditional arc welding methods.As a solid-phase welding technology,ultrasonic metal welding has the characteristics of high welding efficiency and less welded defects.It is also suitable for welding sound metal bonds.Aluminum and magnesium ultrasonic welding has become a research hotspot.Therefore,the evolution of microstructures and mechanical performance of Al/Mg and multi-layer Al/Mg ultrasonic welding,and the new study works,including the molecular dynamic simulation of Al/Mg ultrasonic welding and hybrid based on ultrasonic welding are summarized.Furthermore,several promising research directions are proposed to guide in-depth investigations into the ultrasonic welding of Al/Mg dissimilar joints.
基金supported by the National Natural Science Foundation of China(Grant No.52035005)the Key R&D Program of Shandong Province in China(Grant No.2021ZLGX01).
文摘The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.
基金co-supported by the Science Center for Gas Turbine Project, China(No. P2022-AB-IV-001-002)the National Natural Science Foundation of China (No. 91960203)+1 种基金the Fundamental Research Funds for the Central Universities (No. D5000230048)the Innovation Capability Support Program of Shaanxi (No. 2022TD-60)
文摘Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.
文摘The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.
文摘This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-Zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20266 and 12302503)Scientific and technological research projects in Sichuan province(Grant No.2024NSFSC0973).
文摘The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure.
基金financially supported by the National Natural Science Foundation of China(No.22272151)Public Welfare Technology Application Research Project of Jinhua City,China(No.2023-4-022)。
文摘BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1602602 and 2023YFA1609600)the National Natural Science Foundation of China (Grant No. U23A20580)+3 种基金the open research fund of Songshan Lake Materials Laboratory (Grant No. 2022SLABFN27)Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF004)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120020)the interdisciplinary program of Wuhan National High Magnetic Field Center at Huazhong University of Science and Technology (Grant No. WHMFC202132)。
文摘Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids.
基金the National Natural Science Foundation of China(Grant No.51971183)supported by OU(Osaka University,Japan)program for multilateral international collaboration research in joining and welding。
文摘A low rare-earth containing ZEK100-O magnesium alloy was welded to AA1230-clad high-strength AA2024-T3 aluminum alloy via solidstate ultrasonic spot welding(USW)to evaluate the microstructure,tensile lap shear strength,and fatigue properties.The tensile strength increased with increasing welding energy,peaked at a welding energy of 1000 J,and then decreased due to the formation of an increasingly thick diffusion layer mainly containing Al12Mg17intermetallic compound at higher energy levels.The peak tensile lap shear strength attained at 1000 J was attributed to the optimal inter-diffusion between the magnesium alloy and softer AA1230-clad Al layer along with the presence of‘fishhook'-like mechanical interlocks at the weld interface and the formation of an indistinguishable intermetallic layer.The dissimilar joints welded at 1000 J also exhibited a longer fatigue life than other Mg-Al dissimilar joints,suggesting the beneficial role of the softer clad layer with a better intermingling capacity during USW.While the transverse-through-thickness(TTT)failure mode prevailed at lower cyclic loading levels,interfacial failure was the predominant mode of fatigue failure at higher cyclic loads,where distinctive fatigue striations were also observed on the fracture surface of the softer clad Al layer.This was associated with the presence of opening stress and bending moment near the nugget edge despite the tension-tension lap shear cyclic loading applied.
基金financially supported by the National Natural Science Foundation of China(No.52271091)the National Key Research and Development Program of China(No.2021YFB3701100)the Natural Science Foundation Project of Ningxia Province(No.2023AAC03324).
文摘The Mg-9Li-1Zn(LZ91)alloy was subjected to an ultrasonic surface rolling process(USRP)with varying passes for the purpose of modifying its surface state.The USRP transformed surface residual stress from initial tensile stress to compressive stress,decreasing the surface roughness and increasing the ratio of the β-Li phase.The USRPed LZ91 sample(3 passes)showed superior corrosion resistance,with the corrosion current density changing from 57.11 to 24.70μA cm^(-2),and the polarization resistance increasing from 576.3 to 1146.1Ωcm^(2).According to the corrosion procedure evaluations,in situ observation revealed that the LZ91 alloy initially experiences pitting,which subsequently develops into cracking.The substantial area coverage of the β-Li phase facilitates the formation of a protective film on the surface,effectively delaying localized corrosion.
基金co-supported by the National Key Research and Development Program of China(No.2024YFE0107900)the National Natural Science Foundation of China(No.62222105)+1 种基金the Natural Science Foundation of Guangdong Province,China(No.2024A1515010235)the 2024 China Unicom Guangdong low-altitude communication and sensing key technology research and digital twin platform research and development project(No.20241890).
文摘Unmanned aerial vehicle(UAV)swarm network consisting of a collection of micro UAVs can be used for many applications.It is well established that packet routing is a fundamental problem to achieve UAV collaboration.However,the highly dynamic nature of UAVs,frequently changing network topologies and security issues,poses significant challenges to packet forwarding in UAV networks.The existing topology-based routing protocols are not well suited in UAV network due to their high controlling overhead or excessive end-to-end delay.Geographic routing is regarded as a promising solution,as it only requires local information.In order to enhance the accuracy and security of geographic routing in highly dynamic UAV network,in this paper,we propose a new predictive geographic(PGeo)routing strategy with location verification.First,a detection mechanism is adopted to recognize malicious UAVs falsifying their location.Then,an accurate average service time of a packet in the medium access control(MAC)layer is derived to assist location prediction.The proposed delay model can provide a theoretical basis for future work,and our simulation results reveal that PGeo outstrips the existing geographic routing protocols in terms of packet delivery ratio in the presence of location spoofing behavior.
文摘This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.
文摘A novel method is developed by utilizing the fractional frequency based multirange rulers to precisely position the passive inter-modulation(PIM)sources within radio frequency(RF)cables.The proposed method employs a set of fractional frequencies to create multiple measuring rulers with different metric ranges to determine the values of the tens,ones,tenths,and hundredths digits of the distance.Among these rulers,the one with the lowest frequency determines the maximum metric range,while the one with the highest frequency decides the highest achievable accuracy of the position system.For all rulers,the metric accuracy is uniquely determined by the phase accuracy of the detected PIM signals.With the all-phase Fourier transform method,the phases of the PIM signals at all fractional frequencies maintain almost the same accuracy,approximately 1°(about 1/360 wavelength in the positioning accuracy)at the signal-to-noise ratio(SNR)of 10 d B.Numerical simulations verify the effectiveness of the proposed method,improving the positioning accuracy of the cable PIM up to a millimeter level with the highest fractional frequency operating at 200 MHz.
基金Project(2022YFB3707201) supported by the National Key R&D Program of ChinaProject(U2341254) supported by the Ye Qisun Science Foundation of National Natural Science Foundation of China+1 种基金Projects(0604022GH0202143,0604022SH0201143) supported by the NPU Aoxiang Distinguished Young Scholars,ChinaProject supported by the Funding of Young Top-notch Talent of the National Ten Thousand Talent Program,China。
文摘Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE) simulation. The quantitative model of atomic diffusion, which is related to the ultrasonic bonding parameters, time and distance, is established to calculate the atomic diffusion of the Al-Au interface. The maximum relative error between the calculated and experimental fraction of Al atom is 7.35%, indicating high prediction accuracy of this model. During the process of ultrasonic bonding, Au8Al3 is the main intermetallic compound (IMC) at the Al-Au interface. With larger bonding forces, higher ultrasonic powers and longer bonding time, it is more difficult to remove the oxide particles from the Al-Au interface, which hinders the atomic diffusion. Therefore, the complicated stress state and the existence of oxide particles both promotes the formation of holes. The shear strength of Al-Au ultrasonic bonding increases with increasing bonding force, ultrasonic power and bonding time. However, combined with the presence of holes at especial parameters, the optimal ultrasonic bonding parameter is confirmed to be a bonding force of 23 gf, ultrasonic power of 75 mW and bonding time of 21 ms.
基金supported by the National Natural Science Foundation of China(Nos.91960203 and 52375399)the Chinese Aeronautical Establishment Aeronautical Science Foundation(No.2022Z045051001).
文摘Ultrasonic elliptical vibration cutting(UEVC)with clockwise elliptical vibration has made notable achievements in precision machining;however,its critical cutting speed limits its application to low-speed machining tasks.Meanwhile,rotary ultrasonic elliptical machining(RUEM)with clockwise elliptical vibration has been validated as an effective high-speed cutting technology.Unfortunately,conventional RUEM leads to increased surface roughness.To address this issue and enhance machining quality,we propose a novel RUEM method employing an anticlockwise vibration direction,called anticlockwise rotary ultrasonic elliptical machining(ARUEM).The mechanisms of surface formation and subsurface strengthening for ARUEM are analyzed.Experimental validations were performed on Ti-6Al-4V alloy,revealing that ARUEM achieved substantially lower ridge heights and up to a 50%reduction in surface roughness compared to conventional RUEM.Additionally,relative to conventional milling,ARUEM resulted in up to 122.6%thicker plastic deformation layers,53.4%higher surface residual compressive stress,and 19.3%greater surface micro-hardness.This study showcases a promising method for high-performance milling of Ti-6Al-4V,offers new insights into RUEM by examining the influence of vibration direction,and enhances understanding of surface formation and subsurface strengthening in the ARUEM method.
基金financially supported by the National Natural Science Foundation of China(Nos.52304129 and 52274130)Natural Science Foundation of Sichuan Province(No.2024NSFSC0971)+1 种基金Guizhou Provincial Basic Research Program(Natural Science)(No.ZK[2023]general 070)Shandong Key Laboratory of Mining Disaster Prevention and Control,Shandong University of Science and Technology(No.SMDPC202403)。
文摘The combination of ultrasonic and acid fracturing fluid can strengthen the modification effect on the micropore structure of the coal matrix,thereby enhancing the efficiency of the acid fracturing process.In this research,acetic acid was utilized to formulate acid fracturing fluids with varying concentrations,and the evolutionary traits of both the acid fracturing fluids and ultrasonic waves in relation to coal samples were investigated.The functional group structure,mineral composition,micropore structure and surface morphology of coal samples were characterized by FTIR,XRD,N_(2)adsorption at low temperature and SEM-EDS.The results showed that aromatics(I)and branching parameters(CH_(2)/CH_(3))were reduced by 81.58%and 88.67%,respectively,after 9%acetic acid treatment.Acetic acid can dissolve carbonates and clay minerals in coal,create new pores,and increase porosity,pore volume and pore fractal dimension.After modification by 7%acetic acid,the pore volume increased by 5.7 times.SEM observation shows that the diameter of coal surface holes increases,EDS scanning shows that the content of mineral elements in coal decreases,the connectivity of coal holes increases,and the holes expand.The findings of this research offer theoretical direction for optimizing ultrasonic-enhanced acid fracturing fluid modification.
基金supported by the grant from the Russian Science Foundation(No.23-13-00354,https://rscf.ru/project/23-13-00354/).
文摘In this study,the influence of focused ultrasonic vibration(UV)in the arc column with a non-consumable electrode on the electro-physical characteristics of the arc,near-electrode voltage drops,and the shape and structure of the arc column discharge were invest-igated.It was determined that a focused ultrasonic field in the welding arc column leads to an increase in the arc discharge voltage.Focusing UV on the electrode and in the welding bath does not increase arc voltage.In contrast,the presence of a focused ultrasonic field in the electrode region of the welding arc increases its voltage by 0.9 V.Under the influence of UV,the voltage drop in the cath-ode region on the arc increases by approximately 2 V,and it increases by 0.8 V in the anode region.However,the voltage in the arc column decreases slightly.The impact of a focused ultrasonic field reduces the arc diameter in the anode region and the column.In contrast,near the cathode region,the diameter increases,indicating a change in the nature of the cathodic flow of charged particles in this area.
基金supported by National Natural Science Foundation of China Grant(No.42004040,42474092,U2239204,and 42304145)Natural Science Foundation of Jiangxi Province Grant(20242BAB25190 and 20232BAB213077).
文摘Accurate and rapid determination of source locations is of great significance for surface microseismic monitoring.Traditional methods,such as diffraction stacking,are time-consuming and challenging for real-time monitoring.In this study,we propose an approach to locate microseismic events using a deep learning algorithm with surface data.A fully convolutional network is designed to predict source locations.The input data is the waveform of a microseismic event,and the output consists of three 1D Gaussian distributions representing the probability distribution of the source location in the x,y,and z dimensions.The theoretical dataset is generated to train the model,and several data augmentation methods are applied to reduce discrepancies between the theoretical and field data.After applying the trained model to field data,the results demonstrate that our method is fast and achieves comparable location accuracy to the traditional diffraction stacking location method,making it promising for real-time microseismic monitoring.