On February 20,2025,China National Petroleum Corporation announced that China's first ultra-deep scientific exploration well-Shenditake 1 Well-successfully reached a depth of 10910 m underground(Fig.1).Deep Earth ...On February 20,2025,China National Petroleum Corporation announced that China's first ultra-deep scientific exploration well-Shenditake 1 Well-successfully reached a depth of 10910 m underground(Fig.1).Deep Earth Towerke 1 Well is located in the heart of the Taklamakan Desert in the Xinjiang Uyghur Autonomous Region,within the territory of Shaya County.It has become the deepest vertical well in Asia and the second deepest in the world.The well has successively set five major engineering records:The deepest global tailpipe cementing,the deepest global cable imaging logging,the fastest global onshore drilling to exceed 10000 m,the deepest direct well drilling in Asia,and the deepest onshore coring in Asia.This marks another major breakthrough for China in the field of“Deep Earth”exploration,following its achievements in“Deep Space”and“Deep Sea.”展开更多
The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide...The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide Band(UWB)technology has emerged as a promising candidate for addressing this need,offering high precision,immunity to multipath interference,and robust performance in challenging environments.In this comprehensive survey,we systematically explore UWB-based localization for mobile autonomous machines,spanning from fundamental principles to future trends.To the best of our knowledge,this review paper stands as the pioneer in systematically dissecting the algorithms of UWB-based localization for mobile autonomous machines,covering a spectrum from bottom-ranging schemes to advanced sensor fusion,error mitigation,and optimization techniques.By synthesizing existing knowledge,evaluating current methodologies,and highlighting future trends,this review aims to catalyze progress and innovation in the field,unlocking new opportunities for mobile autonomous machine applications across diverse industries and domains.Thus,it serves as a valuable resource for researchers,practitioners,and stakeholders interested in advancing the state-of-the-art UWB-based localization for mobile autonomous machines.展开更多
Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01815-z In the original publication,Fig.5 was published with few mistakes.The correct version of Fig.5 is given in this correction.
The ion conductivity of a solid-state ion conductor generally increases exponentially upon reduction in ionmigration barrier.For prevalent cathode material LiCoO_(2),the room-temperature ion conductivity and migration...The ion conductivity of a solid-state ion conductor generally increases exponentially upon reduction in ionmigration barrier.For prevalent cathode material LiCoO_(2),the room-temperature ion conductivity and migrationbarrier are respectively around 10^(−4)S/cm and 0.3 eV.In this Letter,through first-principles calculations we predictthe existence of 1D superionicity as the Li ions in O_(2)LiCoO_(2)are transformed into Zn_(0.5)CoO_(2)or Li_(0.5)CoO_(2)via cation-exchange reaction or deintercalation.The ion migration barriers(0.01-0.02 eV)even lower than roomtemperature∼𝑘B𝑇are reduced by more than an order of magnitude compared with LiCoO_(2),which are facilitatedby facile transition of mobile ions between two coordination configurations.The room-temperature ion conductivityis estimated to be over 50 S/cm,enhanced by 2-3 orders of magnitude compared with the current highestreported value.Such unprecedented superionicity may also exist in other similar layered ion conductors,whichmay lead to technical advances and exotic effects such as ultrafast ion batteries and quantized ferroelectricity.展开更多
The size of the Audio and Video(AV)content of the 8K program is four times larger than that of 4K content,providing viewers with a more ideal audiovisual experience while placing higher demands on the capability and e...The size of the Audio and Video(AV)content of the 8K program is four times larger than that of 4K content,providing viewers with a more ideal audiovisual experience while placing higher demands on the capability and efficiency of document preparation and processing,signal transmission,and scheduling.However,it is difficult to meet the high robustness requirements of 8K broadcast services because the existing broadcast system architecture is limited by efficiency,cost,and other factors.In this study,an 8K Ultra-High-Definition(UHD)TV program broadcast scheme was designed.The verification results show that the scheme is high quality,highly efficient,and robust.In particular,in the research,the file format normalizing module was first placed in the broadcast area instead of the file preparation area,and the low-compression transmission scheme of the all-IP signal JPEG XS was designed in the signal transmission area for improving the efficiency of the scheme.Next,to reduce the impact on the robustness of broadcast services,the broadcast control logic of the broadcast core components is optimized.Finally,a series of 8K TV program broadcasting systems have been implemented and their performance has been verified.The results show that the system meets the efficiency and robustness requirements of a high-quality 8K AV broadcast system,and thus has a high degree of practicability.展开更多
Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solvi...Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solving the resulting challenge of increased energy consumption.A base station control algorithm based on Multi-Agent Proximity Policy Optimization(MAPPO)is designed.In the constructed 5G UDN model,each base station is considered as an agent,and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance.To reduce the extra power consumption due to frequent sleep mode switching of base stations,a sleep mode switching decision algorithm is proposed.The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent’s action strategy.Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.展开更多
1 Noah Verrier,a 45‑year‑old artist from Tallahassee,Florida,has made a name for himself by painting still life images of ultra‑processed food and selling them online.Verrier's social media accounts showcase his w...1 Noah Verrier,a 45‑year‑old artist from Tallahassee,Florida,has made a name for himself by painting still life images of ultra‑processed food and selling them online.Verrier's social media accounts showcase his works,which have attracted a wide audience,some of whom think highly of them and demand they should be displayed in the Louvre.展开更多
A recent paper published in Journal of the American Chemical Society by W.Zhang and co-workers reported a ground-breaking advance by establishing 209 Bi and 127 I ultra-wideline solid-state NMR(UW SSNMR)as powerful to...A recent paper published in Journal of the American Chemical Society by W.Zhang and co-workers reported a ground-breaking advance by establishing 209 Bi and 127 I ultra-wideline solid-state NMR(UW SSNMR)as powerful tools for probing bismuth and iodine ions in metal-organic frameworks(MOFs),despite the severe challenges associated with their exceptionally large quadrupolar interactions,and enabled the elucidation of key structural features that are otherwise difficult to access[1].展开更多
Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of s...Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of surgical failure.Therefore,it is necessary to design a visualization system for closed thoracic drainage.Augmented reality(AR)technology can assist in visualizing the internal anatomical structure and determining the insertion point on the body surface.The structure of the currently used steel-needle-guided chest tube was modified by integrating it with an ultrafine diameter camera to provide real-time visualization of the puncture process.After simulation experiments,the overall registration error of the AR method was measured to be within(3.59±0.53)mm,indicating its potential for clinical application.The ultrafine diameter camera module and improved steel-needle-guided chest tube can timely reflect the position of the needle tip in the human body.A comparative experiment showed that video guidance could improve the safety of the puncture process compared to the traditional method.Finally,a qualitative evaluation of the usability of the system was conducted through a questionnaire.This system facilitates the visualization of closed thoracic drainage puncture procedure and pro-vides an implementation scheme to enhance the accuracy and safety of the operative step,which is conducive to reducing the learning curve and improving the proficiency of the doctors.展开更多
The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating t...The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating temperatures above 400℃is a significant challenge[1-3].It is known that reversible thermoelas-tic martensitic transformation(MT)is the basis for shape mem-ory behavior[4].Currently,there are several systems in which MT temperatures meet the above requirements,for example,RuNb[5],HfPd[6],TiPd[7].展开更多
We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the...We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.展开更多
Metal(oxide)-zeolite bifunctional catalysts have been the subject of considerable attention from researchers in both academic and industry,due to their superior activity and stability in various heterogeneous catalyti...Metal(oxide)-zeolite bifunctional catalysts have been the subject of considerable attention from researchers in both academic and industry,due to their superior activity and stability in various heterogeneous catalytic processes[1–3].Based on the different metal loading sites,these bifunctional catalysts can be categorized as follows:(a)metal species loaded on the outer surface of zeolite crystals,(b)metal species encapsulated within the channels or cavities of zeolites,and(c)metal species incorporated into the zeolite framework(Fig.1).Metal species in type(b)and(c)samples are stabilized by the zeolite frameworks,resulting in excellent thermal and hydrothermal stability during catalytic reactions,especially under harsh conditions,as well as unique shape-selectivity.However,the complex synthesis procedures make large-scale preparation of these catalysts impractical.In contrast,a type(a)sample can be achieved via the simple impregnation;nevertheless,migration of metal species and their aggregation into larger particles often occur during the calcination and reduction processes.展开更多
Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodi...Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodicity.Here,we provide both numerical and analytical evidence that a depth gradient metasurface can achieve discrete ultra-broadband perfect anomalous reflection in the microwave range in the absence of geometric periodicity.Remarkably,by adjusting the operating frequency of the incident wave,the same effect can be steadily obtained via a physically equivalent phase periodicity in the PGM.Based on this mechanism,a perfect retroreflector with a broadband response ranging from 1 GHz to 40 GHz is realized.Our work has promising applications in communication,source tracking,and military satellites.展开更多
As an important sustainable energy source,Li-ion batteries have been widely used in mobile phones,electric vehicles,large-scale energy storage and aerospace.However,due to the inevitable safety risks of traditional li...As an important sustainable energy source,Li-ion batteries have been widely used in mobile phones,electric vehicles,large-scale energy storage and aerospace.However,due to the inevitable safety risks of traditional liquid Li-ion batteries,the use of all-solid-state batteries to replace organic liquid electrolytes has become one of the most effective ways to solve safety problem.Solid-state electrolyte(SSE)is the core part of allsolid-state Li-ion battery,and ideal SSE has the characteristics of high ionic conductivity,wide enough electrochemical stability window,suitable mechanical strength and excellent chemical stability,the first among which is particularly an essential prerequisite.While,so far only a few SSEs exhibit the Li ionic conductivities higher than 10^(-4) S/cm at room temperature.展开更多
This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to ex...This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to examine the deterioration mechanisms caused by freeze-thaw cycles and sulfate erosion. The results show that compressive and tensile strengths increase with basalt fiber dosage. The optimal dosage is 0.2%. With longer exposure to sulfate erosion, both strengths decline significantly. Basalt fibers effectively bridge cracks, control expansion, enhance compactness, and improve concrete performance. Ultra-low-temperature freeze-thaw cycles and sulfate erosion cause rapid crack growth. Sulfate erosion produces crystallization products and expansive substances. These fill cracks, create pressure, and damage the internal structure. Freezing and expansion forces further enlarge voids and cracks. This provides space for expansive substances, worsening concrete deterioration and reducing its performance.展开更多
文摘On February 20,2025,China National Petroleum Corporation announced that China's first ultra-deep scientific exploration well-Shenditake 1 Well-successfully reached a depth of 10910 m underground(Fig.1).Deep Earth Towerke 1 Well is located in the heart of the Taklamakan Desert in the Xinjiang Uyghur Autonomous Region,within the territory of Shaya County.It has become the deepest vertical well in Asia and the second deepest in the world.The well has successively set five major engineering records:The deepest global tailpipe cementing,the deepest global cable imaging logging,the fastest global onshore drilling to exceed 10000 m,the deepest direct well drilling in Asia,and the deepest onshore coring in Asia.This marks another major breakthrough for China in the field of“Deep Earth”exploration,following its achievements in“Deep Space”and“Deep Sea.”
文摘The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide Band(UWB)technology has emerged as a promising candidate for addressing this need,offering high precision,immunity to multipath interference,and robust performance in challenging environments.In this comprehensive survey,we systematically explore UWB-based localization for mobile autonomous machines,spanning from fundamental principles to future trends.To the best of our knowledge,this review paper stands as the pioneer in systematically dissecting the algorithms of UWB-based localization for mobile autonomous machines,covering a spectrum from bottom-ranging schemes to advanced sensor fusion,error mitigation,and optimization techniques.By synthesizing existing knowledge,evaluating current methodologies,and highlighting future trends,this review aims to catalyze progress and innovation in the field,unlocking new opportunities for mobile autonomous machine applications across diverse industries and domains.Thus,it serves as a valuable resource for researchers,practitioners,and stakeholders interested in advancing the state-of-the-art UWB-based localization for mobile autonomous machines.
文摘Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01815-z In the original publication,Fig.5 was published with few mistakes.The correct version of Fig.5 is given in this correction.
基金supported by the National Natural Science Foundation of China(Grant No.22073034)。
文摘The ion conductivity of a solid-state ion conductor generally increases exponentially upon reduction in ionmigration barrier.For prevalent cathode material LiCoO_(2),the room-temperature ion conductivity and migrationbarrier are respectively around 10^(−4)S/cm and 0.3 eV.In this Letter,through first-principles calculations we predictthe existence of 1D superionicity as the Li ions in O_(2)LiCoO_(2)are transformed into Zn_(0.5)CoO_(2)or Li_(0.5)CoO_(2)via cation-exchange reaction or deintercalation.The ion migration barriers(0.01-0.02 eV)even lower than roomtemperature∼𝑘B𝑇are reduced by more than an order of magnitude compared with LiCoO_(2),which are facilitatedby facile transition of mobile ions between two coordination configurations.The room-temperature ion conductivityis estimated to be over 50 S/cm,enhanced by 2-3 orders of magnitude compared with the current highestreported value.Such unprecedented superionicity may also exist in other similar layered ion conductors,whichmay lead to technical advances and exotic effects such as ultrafast ion batteries and quantized ferroelectricity.
文摘The size of the Audio and Video(AV)content of the 8K program is four times larger than that of 4K content,providing viewers with a more ideal audiovisual experience while placing higher demands on the capability and efficiency of document preparation and processing,signal transmission,and scheduling.However,it is difficult to meet the high robustness requirements of 8K broadcast services because the existing broadcast system architecture is limited by efficiency,cost,and other factors.In this study,an 8K Ultra-High-Definition(UHD)TV program broadcast scheme was designed.The verification results show that the scheme is high quality,highly efficient,and robust.In particular,in the research,the file format normalizing module was first placed in the broadcast area instead of the file preparation area,and the low-compression transmission scheme of the all-IP signal JPEG XS was designed in the signal transmission area for improving the efficiency of the scheme.Next,to reduce the impact on the robustness of broadcast services,the broadcast control logic of the broadcast core components is optimized.Finally,a series of 8K TV program broadcasting systems have been implemented and their performance has been verified.The results show that the system meets the efficiency and robustness requirements of a high-quality 8K AV broadcast system,and thus has a high degree of practicability.
基金supported by National Natural Science Foundation of China(62271096,U20A20157)Natural Science Foundation of Chongqing,China(CSTB2023NSCQ-LZX0134)+3 种基金University Innovation Research Group of Chongqing(CXQT20017)Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300632)the Chongqing Postdoctoral Special Funding Project(2022CQBSHTB2057).
文摘Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solving the resulting challenge of increased energy consumption.A base station control algorithm based on Multi-Agent Proximity Policy Optimization(MAPPO)is designed.In the constructed 5G UDN model,each base station is considered as an agent,and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance.To reduce the extra power consumption due to frequent sleep mode switching of base stations,a sleep mode switching decision algorithm is proposed.The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent’s action strategy.Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.
文摘1 Noah Verrier,a 45‑year‑old artist from Tallahassee,Florida,has made a name for himself by painting still life images of ultra‑processed food and selling them online.Verrier's social media accounts showcase his works,which have attracted a wide audience,some of whom think highly of them and demand they should be displayed in the Louvre.
基金supported by the National Natural Science Foundation of China(Grants 22472075 and 22272075).
文摘A recent paper published in Journal of the American Chemical Society by W.Zhang and co-workers reported a ground-breaking advance by establishing 209 Bi and 127 I ultra-wideline solid-state NMR(UW SSNMR)as powerful tools for probing bismuth and iodine ions in metal-organic frameworks(MOFs),despite the severe challenges associated with their exceptionally large quadrupolar interactions,and enabled the elucidation of key structural features that are otherwise difficult to access[1].
基金the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant(No.20172005)。
文摘Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of surgical failure.Therefore,it is necessary to design a visualization system for closed thoracic drainage.Augmented reality(AR)technology can assist in visualizing the internal anatomical structure and determining the insertion point on the body surface.The structure of the currently used steel-needle-guided chest tube was modified by integrating it with an ultrafine diameter camera to provide real-time visualization of the puncture process.After simulation experiments,the overall registration error of the AR method was measured to be within(3.59±0.53)mm,indicating its potential for clinical application.The ultrafine diameter camera module and improved steel-needle-guided chest tube can timely reflect the position of the needle tip in the human body.A comparative experiment showed that video guidance could improve the safety of the puncture process compared to the traditional method.Finally,a qualitative evaluation of the usability of the system was conducted through a questionnaire.This system facilitates the visualization of closed thoracic drainage puncture procedure and pro-vides an implementation scheme to enhance the accuracy and safety of the operative step,which is conducive to reducing the learning curve and improving the proficiency of the doctors.
基金supported by the National Natural Science Foundation of China(Nos.52201207 and 52271169)the Fundamental Research Funds for the Central University(No.3072024LJ1002).
文摘The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating temperatures above 400℃is a significant challenge[1-3].It is known that reversible thermoelas-tic martensitic transformation(MT)is the basis for shape mem-ory behavior[4].Currently,there are several systems in which MT temperatures meet the above requirements,for example,RuNb[5],HfPd[6],TiPd[7].
基金supported by the National Natural Science Foundation of China(Grant Nos.12192251,12334014,92480001,12134001,12304418,12274130,12274133,12474378,and 12404378)the National Key R&D Program of China(Grant Nos.2022YFA1404600 and 2022YFA1205100)+2 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(Grant No.2023nmc005)。
文摘We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.
基金financially supported by the National Key R&D Program of China(2024YFE0101100)the National Natural Science Foundation of China(22475112,22305132,22305155)+1 种基金the China Postdoctoral Science Foundation(2023M732323)the Postdoctoral Fellowship Program of CPSF(GZC20231679).
文摘Metal(oxide)-zeolite bifunctional catalysts have been the subject of considerable attention from researchers in both academic and industry,due to their superior activity and stability in various heterogeneous catalytic processes[1–3].Based on the different metal loading sites,these bifunctional catalysts can be categorized as follows:(a)metal species loaded on the outer surface of zeolite crystals,(b)metal species encapsulated within the channels or cavities of zeolites,and(c)metal species incorporated into the zeolite framework(Fig.1).Metal species in type(b)and(c)samples are stabilized by the zeolite frameworks,resulting in excellent thermal and hydrothermal stability during catalytic reactions,especially under harsh conditions,as well as unique shape-selectivity.However,the complex synthesis procedures make large-scale preparation of these catalysts impractical.In contrast,a type(a)sample can be achieved via the simple impregnation;nevertheless,migration of metal species and their aggregation into larger particles often occur during the calcination and reduction processes.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274313,62275184,and 62411540033)Collaborative Innovation Center of Suzhou Nano Science and Technology,Suzhou Basic Research Project(Grant No.SJC2023003)+1 种基金the Gusu Leading Talent Plan for Scientific and Technological Innovation and Entrepreneurship(Grant No.ZXL2024400)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodicity.Here,we provide both numerical and analytical evidence that a depth gradient metasurface can achieve discrete ultra-broadband perfect anomalous reflection in the microwave range in the absence of geometric periodicity.Remarkably,by adjusting the operating frequency of the incident wave,the same effect can be steadily obtained via a physically equivalent phase periodicity in the PGM.Based on this mechanism,a perfect retroreflector with a broadband response ranging from 1 GHz to 40 GHz is realized.Our work has promising applications in communication,source tracking,and military satellites.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2020MB049)the Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai(No.AMGM2023A07)。
文摘As an important sustainable energy source,Li-ion batteries have been widely used in mobile phones,electric vehicles,large-scale energy storage and aerospace.However,due to the inevitable safety risks of traditional liquid Li-ion batteries,the use of all-solid-state batteries to replace organic liquid electrolytes has become one of the most effective ways to solve safety problem.Solid-state electrolyte(SSE)is the core part of allsolid-state Li-ion battery,and ideal SSE has the characteristics of high ionic conductivity,wide enough electrochemical stability window,suitable mechanical strength and excellent chemical stability,the first among which is particularly an essential prerequisite.While,so far only a few SSEs exhibit the Li ionic conductivities higher than 10^(-4) S/cm at room temperature.
文摘This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to examine the deterioration mechanisms caused by freeze-thaw cycles and sulfate erosion. The results show that compressive and tensile strengths increase with basalt fiber dosage. The optimal dosage is 0.2%. With longer exposure to sulfate erosion, both strengths decline significantly. Basalt fibers effectively bridge cracks, control expansion, enhance compactness, and improve concrete performance. Ultra-low-temperature freeze-thaw cycles and sulfate erosion cause rapid crack growth. Sulfate erosion produces crystallization products and expansive substances. These fill cracks, create pressure, and damage the internal structure. Freezing and expansion forces further enlarge voids and cracks. This provides space for expansive substances, worsening concrete deterioration and reducing its performance.