采用自动埋弧焊机对超低碳贝氏体钢(ULCB钢)进行直缝双面焊双面成型焊接试验,分析了焊接热输入对其焊接接头组织及性能的影响。结果表明:焊缝显微组织主要是针状铁素体和粒状贝氏体,这两种相组成和相比例,极大地影响了接头的强韧性。随...采用自动埋弧焊机对超低碳贝氏体钢(ULCB钢)进行直缝双面焊双面成型焊接试验,分析了焊接热输入对其焊接接头组织及性能的影响。结果表明:焊缝显微组织主要是针状铁素体和粒状贝氏体,这两种相组成和相比例,极大地影响了接头的强韧性。随着焊接热输入增大,焊缝区针状铁素体含量先减少后增加,粒状贝氏体含量先增大后减少,热影响区晶粒变得粗大,ULCB钢接头强韧性呈现一定规律的变化。在较小的焊接线能量(24.81 k J/cm)下,焊接接头具有优良的强韧性,抗拉强度达到803.63 MPa,为母材抗拉强度的94.3%,焊缝和热影响区冲击韧性分别为193、232 J。展开更多
The stress relaxation curves of Ultra-Low Carbon Bainitic(ULCB) steels with different Cu and B contents were measured by using Gleeble-1500 dynamic thermal-mechanical simulator. The results show that Cu and B added ca...The stress relaxation curves of Ultra-Low Carbon Bainitic(ULCB) steels with different Cu and B contents were measured by using Gleeble-1500 dynamic thermal-mechanical simulator. The results show that Cu and B added can accelerate the strain-induced precipitation reaction, and the effect of Cu and B is even more obvious with Cu and B combined addition or Cu content increased. The TEM analysis of precipitate engendered at the temperature of 850℃ C indicate that Nb(C,N) precipitate nucleates dominantly on the dislocation line, and grows with holding time extended while the precipitate particle size increases from 5 nm to 17 nm.展开更多
The microstructure and properties of stmulated heat affected zone (HAZ) of laser welded ULCB600 steel were investigate by applying the simulation technique with gleeble - 2000 dynamic thermal - me - chanical simulat...The microstructure and properties of stmulated heat affected zone (HAZ) of laser welded ULCB600 steel were investigate by applying the simulation technique with gleeble - 2000 dynamic thermal - me - chanical simulator.The influence of the preheat condition on the microstructure and properties of simu- lated HAZ of laser welded plate was also studied in order to evaluate the feasibility of reducing arisk that the ductility and toedness of HAZ may be poor by using preheat treatment.The results indicate that the grain size of laser - welded HAZ simulated is very small no matter if there is preheat, the toughness of simulated HAZ is therefore improved comparing to the base metal,and there is no obvious brittle - ductile transition in the range from - 80℃ to 20℃. The TEM analyses of sub -microstruc- ture also discover that microstructure constituent of both simulated HAZ is dominative lath martensite. However, the shaf of martensite is relatively coarse,and the dislocation density is relatively high for simulated HAZ with 200℃ preheat because of slower cooling rate. Combination of these tow factors is responsible for farer bardness and better toughness of simulated HAZ with preheat condition.展开更多
超低碳贝氏体 (U L CB)钢采用极低的碳含量 ,充分利用 Mn、 Mo、Nb、Ni、Ti、B等元素的合金化作用 ,通过 U L CB组织获得了高的强韧性及优良的低温韧性 ;由于 U L CB钢碳含量极低 ,焊接性优良 ,焊接热影响区 (HAZ)韧性明显改善 ,裂纹敏...超低碳贝氏体 (U L CB)钢采用极低的碳含量 ,充分利用 Mn、 Mo、Nb、Ni、Ti、B等元素的合金化作用 ,通过 U L CB组织获得了高的强韧性及优良的低温韧性 ;由于 U L CB钢碳含量极低 ,焊接性优良 ,焊接热影响区 (HAZ)韧性明显改善 ,裂纹敏感性显著降低。UL CB钢焊接时 ,焊缝金属是焊接接头的薄弱环节 ,研制开发超低碳贝氏体焊接材料是实现 UL CB钢焊接的关键环节。展开更多
文摘采用自动埋弧焊机对超低碳贝氏体钢(ULCB钢)进行直缝双面焊双面成型焊接试验,分析了焊接热输入对其焊接接头组织及性能的影响。结果表明:焊缝显微组织主要是针状铁素体和粒状贝氏体,这两种相组成和相比例,极大地影响了接头的强韧性。随着焊接热输入增大,焊缝区针状铁素体含量先减少后增加,粒状贝氏体含量先增大后减少,热影响区晶粒变得粗大,ULCB钢接头强韧性呈现一定规律的变化。在较小的焊接线能量(24.81 k J/cm)下,焊接接头具有优良的强韧性,抗拉强度达到803.63 MPa,为母材抗拉强度的94.3%,焊缝和热影响区冲击韧性分别为193、232 J。
文摘The stress relaxation curves of Ultra-Low Carbon Bainitic(ULCB) steels with different Cu and B contents were measured by using Gleeble-1500 dynamic thermal-mechanical simulator. The results show that Cu and B added can accelerate the strain-induced precipitation reaction, and the effect of Cu and B is even more obvious with Cu and B combined addition or Cu content increased. The TEM analysis of precipitate engendered at the temperature of 850℃ C indicate that Nb(C,N) precipitate nucleates dominantly on the dislocation line, and grows with holding time extended while the precipitate particle size increases from 5 nm to 17 nm.
文摘The microstructure and properties of stmulated heat affected zone (HAZ) of laser welded ULCB600 steel were investigate by applying the simulation technique with gleeble - 2000 dynamic thermal - me - chanical simulator.The influence of the preheat condition on the microstructure and properties of simu- lated HAZ of laser welded plate was also studied in order to evaluate the feasibility of reducing arisk that the ductility and toedness of HAZ may be poor by using preheat treatment.The results indicate that the grain size of laser - welded HAZ simulated is very small no matter if there is preheat, the toughness of simulated HAZ is therefore improved comparing to the base metal,and there is no obvious brittle - ductile transition in the range from - 80℃ to 20℃. The TEM analyses of sub -microstruc- ture also discover that microstructure constituent of both simulated HAZ is dominative lath martensite. However, the shaf of martensite is relatively coarse,and the dislocation density is relatively high for simulated HAZ with 200℃ preheat because of slower cooling rate. Combination of these tow factors is responsible for farer bardness and better toughness of simulated HAZ with preheat condition.
文摘超低碳贝氏体 (U L CB)钢采用极低的碳含量 ,充分利用 Mn、 Mo、Nb、Ni、Ti、B等元素的合金化作用 ,通过 U L CB组织获得了高的强韧性及优良的低温韧性 ;由于 U L CB钢碳含量极低 ,焊接性优良 ,焊接热影响区 (HAZ)韧性明显改善 ,裂纹敏感性显著降低。UL CB钢焊接时 ,焊缝金属是焊接接头的薄弱环节 ,研制开发超低碳贝氏体焊接材料是实现 UL CB钢焊接的关键环节。