Compared with a conventional single section two-phase closed thermosyphon (TPCT) wellbore, a two-section TPCT wellbore has better heat transfer performance, which may improve the temperature distribution of fluid in...Compared with a conventional single section two-phase closed thermosyphon (TPCT) wellbore, a two-section TPCT wellbore has better heat transfer performance, which may improve the temperature distribution of fluid in wellbores, increase the temperature of fluid in wellheads and even more effectively reduce the failure rate of conventional TPCT wellbores. Heat transfer performance of two-section TPCT wellbores is affected by working medium, combination mode and oil flow rate. Different working media are introduced into the upper and lower TPCTs, which may achieve a better match between the working medium and the temperature field in the wellbores. Interdependence exists between the combination mode and the flow rate of the oil, which affects the heat transfer performance of a two-section TPCT wellbore. The experimental results show that a two-section TPCT wellbore, with equal upper and lower TPCTs respectively filled with Freon and methanol, has the best heat transfer performance when the oil flow rate is 200 L/h.展开更多
Wavelength tunable and directly modulated distributed Bragg reflector (DBR) lasers with butt-joint technology are designed, fabricated and characterized. The DBR laser consists of a gain section and a DBR section. T...Wavelength tunable and directly modulated distributed Bragg reflector (DBR) lasers with butt-joint technology are designed, fabricated and characterized. The DBR laser consists of a gain section and a DBR section. To increase the electrical isolation between the gain section and the DBR section, parts of a p-doped material in the isolation region are etched off selectively. Over 2kΩ isolation resistance is realized ultimately without the need of ion implantation, which simplifies the fabrication process. The laser exhibits high speed modulation with a large tunable range. The 3dB direct modulation bandwidth of the device is over 8GHz in a 12nm tunable range. This widely tunable DBR laser with the simple structure is promising as a colorless light source for the next-generation time and wavelength division multiplexed passive optical network (TWDM-PON) systems.展开更多
The stable long-distance transmission of radio-frequency(RF)signals holds significant importance from various aspects,including the comparison of optical frequency standards,remote monitoring and control,scientific re...The stable long-distance transmission of radio-frequency(RF)signals holds significant importance from various aspects,including the comparison of optical frequency standards,remote monitoring and control,scientific research and experiments,and RF spectrum management.We demonstrate a scheme where an ultrastable frequency signal was transmitted over a 50 km coiled fiber.The optical RF signal is generated using a two-section distributed feedback(DFB)laser for direct modulation based on the reconstruction equivalent chirp(REC)technique.The 3-dB modulation bandwidth of the two-section DFB laser is 18 GHz and the residual phase noise of-122.87 dBc/Hz is achieved at 10-Hz offset frequency.We report a short-term stability of 1.62×10^(-14)at an average time of 1 s and a long-term stability of 6.55×10^(-18)at the measurement time of 62,000 s when applying current to the front section of the DFB laser.By applying power to both sections,the stability of the system improves to 4.42×10^(-18)within a testing period of 56,737 s.Despite applying temperature variations to the transmission link,long-term stability of 8.63×10^(-18)at 23.9 h can still be achieved.展开更多
Canopy shaking is one of the most commonly used techniques for mechanical harvesting of citrus fruits in orange juice industry.However,tree damage and low harvesting efficiency are the top concerns of growers in adopt...Canopy shaking is one of the most commonly used techniques for mechanical harvesting of citrus fruits in orange juice industry.However,tree damage and low harvesting efficiency are the top concerns of growers in adopting the existing harvesting equipment on a large scale.The purpose of this research was to develop a novel canopy shaking system to minimize tree damage and maximize fruit removal for mechanical citrus harvesting.In this study,a two-section canopy shaker composing of top and bottom shaking systems mounted on two rotating drums was proposed and developed.It was configured with two sets of flexible bow-shaped shaking rods in a staggered distribution,which can shake the top and bottom zones of the tree canopy independently.The shaking system was designed based on a linked crank-rocker mechanism.Kinematic simulation analysis was conducted to verify the quick return characteristics and differential properties of this mechanism.Vibration test showed that the frequency of the shaking rod could be adjusted within a range of 1.1-8.8 Hz related to hydraulic motor speeds.The field tests of the shaking system with an average frequency of 4.7 Hz achieved a fruit removal percentage of 82.6%and tree damage rate of 5.4%under a tractor speed of 3 km/h.By contrast,the combined shaking frequency of 4.7 Hz&4.1 Hz of the canopy shaker produced less tree damage with a percentage of 3.9%.This study indicated that the two-section canopy shaker with an optimized frequency combination could be adaptable to the different zones of the tree canopy,and obtain lower tree damage and higher fruit removal percentage.展开更多
We demonstrate a high-resolution frequency-modulated continuous-wave dual-frequency LIDAR system based on a monolithic integrated two-section(TS) distributed feedback(DFB) laser. In order to achieve phase locking of t...We demonstrate a high-resolution frequency-modulated continuous-wave dual-frequency LIDAR system based on a monolithic integrated two-section(TS) distributed feedback(DFB) laser. In order to achieve phase locking of the two lasers in the TS-DFB laser, the sideband optical injection locking technique is employed. A high-quality linear frequency-modulated signal is achieved from the TS-DFB laser. Utilizing the proposed LIDAR system, the distance and velocity of a target can be measured accurately. The maximum relative errors of distance and velocity measurement are 1.6% and 3.18%, respectively.展开更多
The two-section tunable ridge waveguide distributed Bragg reflector (DBR) lasers fabricated by strained In xGa1-xAsyP1-y The threshold current of the laser is 51mA. The tunable range of the laser is 3.2nm and the side...The two-section tunable ridge waveguide distributed Bragg reflector (DBR) lasers fabricated by strained In xGa1-xAsyP1-y The threshold current of the laser is 51mA. The tunable range of the laser is 3.2nm and the side mode suppression ratio (SMSR) is more than 38dB.展开更多
A tunable two-section amplified feedback laser, which employs an amplifier section as the integrated feedback cavity, is designed and fabricated for dual-mode operation with mode separation of 100 GHz. Detailed simula...A tunable two-section amplified feedback laser, which employs an amplifier section as the integrated feedback cavity, is designed and fabricated for dual-mode operation with mode separation of 100 GHz. Detailed simulations and experimental characterizations on the performance of the laser are presented. Promising dual-mode emission with continuous tuning range over 16 GHz(87.41–103.64 GHz) is experimentally demonstrated.展开更多
A 1.3μm two-section multi-quantum well refective semiconductor optical amplifier is designed and fabricated. The impacts of injection current density ratio and the reflectivity of the reflective facet on gain, sat- u...A 1.3μm two-section multi-quantum well refective semiconductor optical amplifier is designed and fabricated. The impacts of injection current density ratio and the reflectivity of the reflective facet on gain, sat- uration and noise characteristics are studied theoretically and experimentally. The results indicate that the gain and saturation power can be easily manipulated by changing the current density ratio; and better gain and noise characteristics can be obtained when the reflectivity is appropriately selected.展开更多
We investigated the dynamic properties of a two-section composite chain of beads under vertical vibration.By analyzing the chain's motion,including phase-shift,mean dilation,center-of-mass displacement,and energy,...We investigated the dynamic properties of a two-section composite chain of beads under vertical vibration.By analyzing the chain's motion,including phase-shift,mean dilation,center-of-mass displacement,and energy,we found that with different bead arrangements,the chain behaved in different ways.We believe that interaction existing at the interface between bead sections provides the underlying cause.This interaction causes different energy in different arrangements,which leads to different dynamic characteristics.展开更多
基金the financial support from the National Natural Science Foundation of China (No. 50674096)PetroChina Scientific & Technological Risk Innovation Project (No. 060511-2-1)
文摘Compared with a conventional single section two-phase closed thermosyphon (TPCT) wellbore, a two-section TPCT wellbore has better heat transfer performance, which may improve the temperature distribution of fluid in wellbores, increase the temperature of fluid in wellheads and even more effectively reduce the failure rate of conventional TPCT wellbores. Heat transfer performance of two-section TPCT wellbores is affected by working medium, combination mode and oil flow rate. Different working media are introduced into the upper and lower TPCTs, which may achieve a better match between the working medium and the temperature field in the wellbores. Interdependence exists between the combination mode and the flow rate of the oil, which affects the heat transfer performance of a two-section TPCT wellbore. The experimental results show that a two-section TPCT wellbore, with equal upper and lower TPCTs respectively filled with Freon and methanol, has the best heat transfer performance when the oil flow rate is 200 L/h.
基金Supported by the National Key Project under Grant No 2016YFB0402301the National High Technology Research and Development Program of China under Grant No 2013AA014502the National Natural Science Foundation of China under Grant Nos 61635010,61320106013,61474112,61321063 and 61274071
文摘Wavelength tunable and directly modulated distributed Bragg reflector (DBR) lasers with butt-joint technology are designed, fabricated and characterized. The DBR laser consists of a gain section and a DBR section. To increase the electrical isolation between the gain section and the DBR section, parts of a p-doped material in the isolation region are etched off selectively. Over 2kΩ isolation resistance is realized ultimately without the need of ion implantation, which simplifies the fabrication process. The laser exhibits high speed modulation with a large tunable range. The 3dB direct modulation bandwidth of the device is over 8GHz in a 12nm tunable range. This widely tunable DBR laser with the simple structure is promising as a colorless light source for the next-generation time and wavelength division multiplexed passive optical network (TWDM-PON) systems.
基金supported by the National Key R&D Program of China(No.2020YFB2205804)the National Natural Science Foundation of China(Nos.62273355,61975075,61975076,and 62004094)+1 种基金the Natural Science Foundation of Jiangsu Province of China(No.BK20200334)the Jiangsu Science and Technology Project(No.BE2017003-2)。
文摘The stable long-distance transmission of radio-frequency(RF)signals holds significant importance from various aspects,including the comparison of optical frequency standards,remote monitoring and control,scientific research and experiments,and RF spectrum management.We demonstrate a scheme where an ultrastable frequency signal was transmitted over a 50 km coiled fiber.The optical RF signal is generated using a two-section distributed feedback(DFB)laser for direct modulation based on the reconstruction equivalent chirp(REC)technique.The 3-dB modulation bandwidth of the two-section DFB laser is 18 GHz and the residual phase noise of-122.87 dBc/Hz is achieved at 10-Hz offset frequency.We report a short-term stability of 1.62×10^(-14)at an average time of 1 s and a long-term stability of 6.55×10^(-18)at the measurement time of 62,000 s when applying current to the front section of the DFB laser.By applying power to both sections,the stability of the system improves to 4.42×10^(-18)within a testing period of 56,737 s.Despite applying temperature variations to the transmission link,long-term stability of 8.63×10^(-18)at 23.9 h can still be achieved.
基金Additional financial supports are also provided from the National Key R&D Program of China“the 13th Five-Year Plan”(Program No.2016YFD0700503)Major Program of Cooperative Innovation for Yangling Demonstration Zone(Program No.2016CXY-20)the Shaanxi Provincial Agricultural Technology Program of Innovation and Development(Program No.2016NY-127).
文摘Canopy shaking is one of the most commonly used techniques for mechanical harvesting of citrus fruits in orange juice industry.However,tree damage and low harvesting efficiency are the top concerns of growers in adopting the existing harvesting equipment on a large scale.The purpose of this research was to develop a novel canopy shaking system to minimize tree damage and maximize fruit removal for mechanical citrus harvesting.In this study,a two-section canopy shaker composing of top and bottom shaking systems mounted on two rotating drums was proposed and developed.It was configured with two sets of flexible bow-shaped shaking rods in a staggered distribution,which can shake the top and bottom zones of the tree canopy independently.The shaking system was designed based on a linked crank-rocker mechanism.Kinematic simulation analysis was conducted to verify the quick return characteristics and differential properties of this mechanism.Vibration test showed that the frequency of the shaking rod could be adjusted within a range of 1.1-8.8 Hz related to hydraulic motor speeds.The field tests of the shaking system with an average frequency of 4.7 Hz achieved a fruit removal percentage of 82.6%and tree damage rate of 5.4%under a tractor speed of 3 km/h.By contrast,the combined shaking frequency of 4.7 Hz&4.1 Hz of the canopy shaker produced less tree damage with a percentage of 3.9%.This study indicated that the two-section canopy shaker with an optimized frequency combination could be adaptable to the different zones of the tree canopy,and obtain lower tree damage and higher fruit removal percentage.
基金This work was supported in part by the National Key R&D Program of China(No.2018YFA0704402)National Natural Science Foundation of China(Nos.61974165 and 61975075)+1 种基金National Natural Science Foundation of China for the Youth(No.62004105)Science and Technology Project,and Natural Science Foundation of Jiangsu Province(No.BE2019101)。
文摘We demonstrate a high-resolution frequency-modulated continuous-wave dual-frequency LIDAR system based on a monolithic integrated two-section(TS) distributed feedback(DFB) laser. In order to achieve phase locking of the two lasers in the TS-DFB laser, the sideband optical injection locking technique is employed. A high-quality linear frequency-modulated signal is achieved from the TS-DFB laser. Utilizing the proposed LIDAR system, the distance and velocity of a target can be measured accurately. The maximum relative errors of distance and velocity measurement are 1.6% and 3.18%, respectively.
文摘The two-section tunable ridge waveguide distributed Bragg reflector (DBR) lasers fabricated by strained In xGa1-xAsyP1-y The threshold current of the laser is 51mA. The tunable range of the laser is 3.2nm and the side mode suppression ratio (SMSR) is more than 38dB.
基金supported in part by the National 973 Project of China(No.2011CB301702)the National 863 Project of China(No.2013AA014202)the National Natural Science Foundation of China(Nos.61201103,61335009,61274045,and 61205031)
文摘A tunable two-section amplified feedback laser, which employs an amplifier section as the integrated feedback cavity, is designed and fabricated for dual-mode operation with mode separation of 100 GHz. Detailed simulations and experimental characterizations on the performance of the laser are presented. Promising dual-mode emission with continuous tuning range over 16 GHz(87.41–103.64 GHz) is experimentally demonstrated.
基金supported by the National High Technology Research and Development Program of China(No.2013A014401)the Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP)(No.20120142110064)the Natural Science Foundation of Hubei Province(No.2012FFB02209)
文摘A 1.3μm two-section multi-quantum well refective semiconductor optical amplifier is designed and fabricated. The impacts of injection current density ratio and the reflectivity of the reflective facet on gain, sat- uration and noise characteristics are studied theoretically and experimentally. The results indicate that the gain and saturation power can be easily manipulated by changing the current density ratio; and better gain and noise characteristics can be obtained when the reflectivity is appropriately selected.
基金supported by the National Natural Science Foundation of China (10674067 and 10474045)
文摘We investigated the dynamic properties of a two-section composite chain of beads under vertical vibration.By analyzing the chain's motion,including phase-shift,mean dilation,center-of-mass displacement,and energy,we found that with different bead arrangements,the chain behaved in different ways.We believe that interaction existing at the interface between bead sections provides the underlying cause.This interaction causes different energy in different arrangements,which leads to different dynamic characteristics.