Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequen...Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequency analysis and information theorem is proposed.Firstly, the meaning of HOTFE is defined, and then its validity is testified by numericalsimulation. In the end vibration data from rotors are analyzed by HOTFE. The results demonstratethat it can indeed identify the early rub-impact chaotic behavior in rotors and also is simpler tocalculate than previous methods.展开更多
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ...The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.展开更多
Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-f...Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-forms,which leverage sparse coding(SC),have gained significant attention in the geosciences due to their ability to achieve high TF resolution.However,the iterative approaches typically employed in sparse TF transforms are computationally intensive,making them impractical for real seismic data analysis.To address this issue,we propose an interpretable convolutional sparse coding(CSC)network to achieve high TF resolution.The proposed model is generated based on the traditional short-time Fourier transform(STFT)transform and a modified UNet,named ULISTANet.In this design,we replace the conventional convolutional layers of the UNet with learnable iterative shrinkage thresholding algorithm(LISTA)blocks,a specialized form of CSC.The LISTA block,which evolves from the traditional iterative shrinkage thresholding algorithm(ISTA),is optimized for extracting sparse features more effectively.Furthermore,we create a synthetic dataset featuring complex frequency-modulated signals to train ULISTANet.Finally,the proposed method’s performance is subsequently validated using both synthetic and field data,demonstrating its potential for enhanced seismic data analysis.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv...The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
An upper estimate of the new curvature entropy is provided,via the integral inequality of a concave function.For two origin-symmetric convex bodies in R^(n),this bound is sharper than the log-Minkowski inequality of c...An upper estimate of the new curvature entropy is provided,via the integral inequality of a concave function.For two origin-symmetric convex bodies in R^(n),this bound is sharper than the log-Minkowski inequality of curvature entropy.As its application,a novel proof of the log-Minkowski inequality of curvature entropy in the plane is given.展开更多
We used daily return series for three pairs of datasets from the crude oil markets(WTI and Brent),stock indices(the Dow Jones Industrial Average and S&P 500),and benchmark cryptocurrencies(Bitcoin and Ethereum)to ...We used daily return series for three pairs of datasets from the crude oil markets(WTI and Brent),stock indices(the Dow Jones Industrial Average and S&P 500),and benchmark cryptocurrencies(Bitcoin and Ethereum)to examine the connections between various data during the COVID-19 pandemic.We consider two characteristics:time and frequency.Based on Diebold and Yilmaz’s(Int J Forecast 28:57-66,2012)technique,our findings indicate that comparable data have a substantially stronger correlation(regarding return)than volatility.Per Baruník and Křehlík’(J Financ Econ 16:271-296,2018)approach,interconnectedness among returns(volatilities)reduces(increases)as one moves from the short to the long term.A moving window analysis reveals a sudden increase in correlation,both in volatility and return,during the COVID-19 pandemic.In the context of wavelet coherence analysis,we observe a strong interconnection between data corresponding to the COVID-19 outbreak.The only exceptions are the behavior of Bitcoin and Ethereum.Specifically,Bitcoin combinations with other data exhibit a distinct behavior.The period precisely coincides with the COVID-19 pandemic.Evidently,volatility spillover has a long-lasting impact;policymakers should thus employ the appropriate tools to mitigate the severity of the relevant shocks(e.g.,the COVID-19 pandemic)and simultaneously reduce its side effects.展开更多
Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydo...Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydomain inversion.Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution.Therefore,the research on the joint inversion method in the time-frequency domain is of great significance for improving the inversion resolution,stability,and noise resistance.The introduction of prior information constraints can effectively reduce ambiguity in the inversion process.However,the existing modeldriven time-frequency joint inversion assumes a specific prior distribution of the reservoir.These methods do not consider the original features of the data and are difficult to describe the relationship between time-domain features and frequency-domain features.Therefore,this paper proposes a high-resolution seismic inversion method based on joint data-driven in the time-frequency domain.The method is based on the impedance and reflectivity samples from logging,using joint dictionary learning to obtain adaptive feature information of the reservoir,and using sparse coefficients to capture the intrinsic relationship between impedance and reflectivity.The optimization result of the inversion is achieved through the regularization term of the joint dictionary sparse representation.We have finally achieved an inversion method that combines constraints on time-domain features and frequency features.By testing the model data and field data,the method has higher resolution in the inversion results and good noise resistance.展开更多
Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo...Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.展开更多
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro...In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.展开更多
In this paper,we study the Bowen entropy of stable sets in positive entropy G-system of amenable group actions.The lower bound of the Bowen entropy of these sets are estimated.
As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancin...As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing.展开更多
The role of entropy and enthalpy plays an essential key for the formation of an alloy. This paper illustrates how an alloy is to form and what and why the properties of the alloy are going to have by the entropy and e...The role of entropy and enthalpy plays an essential key for the formation of an alloy. This paper illustrates how an alloy is to form and what and why the properties of the alloy are going to have by the entropy and enthalpy effects via a designed enthalpy-entropy plane (EE-plane) based on the Gibbs free energy equation and the introducing a charactering pseudo-unitary lattice (PUL) for entropy alloys. Based on the PUL scheme, the so-called four effects in high entropy alloys are simply nothing but the entropy effect with the other three accompanying effects: the distortion, slow diffusion and cocktail effects.展开更多
Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ord...Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size.展开更多
High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical ...High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.展开更多
We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induc...We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induced by a probability bi-sequence.We also establish the Katok’s entropy formula for conditional entropy for ergodic measures in the case of the new family of metrics.展开更多
This paper describes the synthesis and characterization of Nb_(2)TiW and Nb_(2)TiMo medium-entropy alloys(MEAs).The Nb_(2)TiW and Nb_(2)TiMo MEAs were successfully synthesized using the arc-melting method.Their struct...This paper describes the synthesis and characterization of Nb_(2)TiW and Nb_(2)TiMo medium-entropy alloys(MEAs).The Nb_(2)TiW and Nb_(2)TiMo MEAs were successfully synthesized using the arc-melting method.Their structures and superconducting properties were investigated through detailed characterization using X-ray diffraction(XRD),resistivity,magnetization,and specific heat measurements.The XRD results confirmed that the obtained Nb_(2)TiW and Nb_(2)TiMo compounds have the same body-centered cubic(BCC)structure and crystallize in the Imˉ3m space group(number 229).Experimental results showed that the superconducting transition temperatures(Tcs)of Nb_(2)TiW and Nb_(2)TiMo are approximately 4.86 and 3.22 K,respectively.The upper and lower critical fields of Nb_(2)TiW are 3.52(2)T and 53.36(2)Oe,respectively,and those of Nb_(2)TiMo are 2.11(2)T and 68.23(3)Oe,respectively.First-principles calculations revealed that the d electrons of Nb,Ti,andMo orW are the dominant contributors to the density of states near the Fermi level.Specific heat measurement results indicated that Nb_(2)TiW and Nb_(2)TMo exhibit BCS full-gap s-wave superconductivity.展开更多
Hypersonic boundary-layer receptivity to freestream entropy and vorticity waves is investigated using direct numerical simula-tions for a Mach 6 flow over a 5.08 mm nose radius cone.Two frequencies of 33 kHz and 150 k...Hypersonic boundary-layer receptivity to freestream entropy and vorticity waves is investigated using direct numerical simula-tions for a Mach 6 flow over a 5.08 mm nose radius cone.Two frequencies of 33 kHz and 150 kHz are considered to be rep-resentative of the first and second instability modes,respectively.For the first mode,wall pressure fluctuations for both entropy and vorticity wave cases exhibit a strong modulation yet without a growing trend,indicating that the first mode is not generated despite its instability predicted by linear stability theory.The potential reason for this is the absence of postshock slow acoustic waves capable of synchronizing with the first mode.By contrast,for the second mode,a typical three-stage boundary-layer response is observed,consistent with that to slow acoustic waves studied previously.Furthermore,the postshock disturbances outside the boundary layer can be decomposed into the entropy(density/temperature fluctuations)and vorticity components(ve-locity fluctuations),and the latter is shown to play a leading role in generating the second mode,even for the case with entropy waves where the density/temperature fluctuations dominate the postshock regions.展开更多
文摘Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequency analysis and information theorem is proposed.Firstly, the meaning of HOTFE is defined, and then its validity is testified by numericalsimulation. In the end vibration data from rotors are analyzed by HOTFE. The results demonstratethat it can indeed identify the early rub-impact chaotic behavior in rotors and also is simpler tocalculate than previous methods.
文摘The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.
基金supported by the National Natural Science Foundation of China under Grant 42474139the Key Research and Development Program of Shaanxi under Grant 2024GX-YBXM-067.
文摘Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-forms,which leverage sparse coding(SC),have gained significant attention in the geosciences due to their ability to achieve high TF resolution.However,the iterative approaches typically employed in sparse TF transforms are computationally intensive,making them impractical for real seismic data analysis.To address this issue,we propose an interpretable convolutional sparse coding(CSC)network to achieve high TF resolution.The proposed model is generated based on the traditional short-time Fourier transform(STFT)transform and a modified UNet,named ULISTANet.In this design,we replace the conventional convolutional layers of the UNet with learnable iterative shrinkage thresholding algorithm(LISTA)blocks,a specialized form of CSC.The LISTA block,which evolves from the traditional iterative shrinkage thresholding algorithm(ISTA),is optimized for extracting sparse features more effectively.Furthermore,we create a synthetic dataset featuring complex frequency-modulated signals to train ULISTANet.Finally,the proposed method’s performance is subsequently validated using both synthetic and field data,demonstrating its potential for enhanced seismic data analysis.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金Supported by the National Science Foundation of China(42055402)。
文摘The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
基金supported by the NSFC(12171378)supported by the Characteristic innovation projects of universities in Guangdong province(2023K-TSCX381)+3 种基金supported by the Young Top-Talent program of Chongqing(CQYC2021059145)the Major Special Project of NSFC(12141101)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202200509)the Natural Science Foundation Project of Chongqing(CSTB2024NSCQ-MSX0937).
文摘An upper estimate of the new curvature entropy is provided,via the integral inequality of a concave function.For two origin-symmetric convex bodies in R^(n),this bound is sharper than the log-Minkowski inequality of curvature entropy.As its application,a novel proof of the log-Minkowski inequality of curvature entropy in the plane is given.
文摘We used daily return series for three pairs of datasets from the crude oil markets(WTI and Brent),stock indices(the Dow Jones Industrial Average and S&P 500),and benchmark cryptocurrencies(Bitcoin and Ethereum)to examine the connections between various data during the COVID-19 pandemic.We consider two characteristics:time and frequency.Based on Diebold and Yilmaz’s(Int J Forecast 28:57-66,2012)technique,our findings indicate that comparable data have a substantially stronger correlation(regarding return)than volatility.Per Baruník and Křehlík’(J Financ Econ 16:271-296,2018)approach,interconnectedness among returns(volatilities)reduces(increases)as one moves from the short to the long term.A moving window analysis reveals a sudden increase in correlation,both in volatility and return,during the COVID-19 pandemic.In the context of wavelet coherence analysis,we observe a strong interconnection between data corresponding to the COVID-19 outbreak.The only exceptions are the behavior of Bitcoin and Ethereum.Specifically,Bitcoin combinations with other data exhibit a distinct behavior.The period precisely coincides with the COVID-19 pandemic.Evidently,volatility spillover has a long-lasting impact;policymakers should thus employ the appropriate tools to mitigate the severity of the relevant shocks(e.g.,the COVID-19 pandemic)and simultaneously reduce its side effects.
文摘Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydomain inversion.Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution.Therefore,the research on the joint inversion method in the time-frequency domain is of great significance for improving the inversion resolution,stability,and noise resistance.The introduction of prior information constraints can effectively reduce ambiguity in the inversion process.However,the existing modeldriven time-frequency joint inversion assumes a specific prior distribution of the reservoir.These methods do not consider the original features of the data and are difficult to describe the relationship between time-domain features and frequency-domain features.Therefore,this paper proposes a high-resolution seismic inversion method based on joint data-driven in the time-frequency domain.The method is based on the impedance and reflectivity samples from logging,using joint dictionary learning to obtain adaptive feature information of the reservoir,and using sparse coefficients to capture the intrinsic relationship between impedance and reflectivity.The optimization result of the inversion is achieved through the regularization term of the joint dictionary sparse representation.We have finally achieved an inversion method that combines constraints on time-domain features and frequency features.By testing the model data and field data,the method has higher resolution in the inversion results and good noise resistance.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0609000)National Natural Science Foundation of China(Grant Nos.52171034 and 52101037)Postdoctoral Fellowship Program of CPSFara(No.GZB20230944).
文摘Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.
基金financially supported by the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province,China(No.2023JH2/101600002)+3 种基金the Liaoning Provincial Natural Science Foundation,China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023 and N2325009)。
文摘In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
基金Supported by NSFC(No.11861010),also supported by NSFC(No.12171175),also supported by NSFC(No.12261006)NSF of Guangxi Province(No.2018GXNSFFA281008)Project of Guangxi First Class Disciplines of Statistics(No.GJKY-2022-01)。
文摘In this paper,we study the Bowen entropy of stable sets in positive entropy G-system of amenable group actions.The lower bound of the Bowen entropy of these sets are estimated.
基金supported by the National Natural Science Foundation of China(Nos.52130204,52174376,52202070,51822405)Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120028)+6 种基金TQ Innovation Foundation(No.23-TQ09-02-ZT-01-005)Aeronautical Science Foundation of China(No.20220042053001)Science and Technology Innovation Team Plan of Shaanxi Province(No.2021TD-17)Key R&D Project of Shaanxi Province(No.2024GX-YBXM-220)Thousands Person Plan of Jiangxi Province(JXSQ2020102131)Fundamental Research Funds for the Central Universities(Nos.D5000230348,D5000220057)China Scholarship Council(Nos.202206290133,202306290190).
文摘As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing.
文摘The role of entropy and enthalpy plays an essential key for the formation of an alloy. This paper illustrates how an alloy is to form and what and why the properties of the alloy are going to have by the entropy and enthalpy effects via a designed enthalpy-entropy plane (EE-plane) based on the Gibbs free energy equation and the introducing a charactering pseudo-unitary lattice (PUL) for entropy alloys. Based on the PUL scheme, the so-called four effects in high entropy alloys are simply nothing but the entropy effect with the other three accompanying effects: the distortion, slow diffusion and cocktail effects.
基金supported by the National Natural Science Foundation of China(Nos.52171166 and U20A20231)the Natural Science Foundation of Hunan Province,China(Nos.2024JJ2060 and 2024JJ5406)+1 种基金the Key Laboratory of Materials in Dynamic Extremes of Sichuan Province(No.2023SCKT1102)the Postgraduate Scientific Research Innovation Project of National University of Defense Technology(No.XJJC2024065).
文摘Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size.
基金supported by the Fujian Provincial Science and Technology Planning Project(No.2022HZ027006,No.2024HZ021023)National Natural Science Foundation of China(No.U22A20118).
文摘High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.
文摘We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induced by a probability bi-sequence.We also establish the Katok’s entropy formula for conditional entropy for ergodic measures in the case of the new family of metrics.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274471,12404165,11922415,and 92165204)Guangzhou Science and Technology Programme(Grant Nos.2024A04J6415)+5 种基金the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-Sen University,No.OEMT-2024-ZRC-02)the Key Laboratory of Magnetoelectric Physics and Devices of Guangdong Province(Grant No.2022B1212010008)the Research Center for Magnetoelectric Physics of Guangdong Province(Grant No.2024B0303390001)Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2401010)Lingyong Zeng acknowledges the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20233299)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.24qupy092)。
文摘This paper describes the synthesis and characterization of Nb_(2)TiW and Nb_(2)TiMo medium-entropy alloys(MEAs).The Nb_(2)TiW and Nb_(2)TiMo MEAs were successfully synthesized using the arc-melting method.Their structures and superconducting properties were investigated through detailed characterization using X-ray diffraction(XRD),resistivity,magnetization,and specific heat measurements.The XRD results confirmed that the obtained Nb_(2)TiW and Nb_(2)TiMo compounds have the same body-centered cubic(BCC)structure and crystallize in the Imˉ3m space group(number 229).Experimental results showed that the superconducting transition temperatures(Tcs)of Nb_(2)TiW and Nb_(2)TiMo are approximately 4.86 and 3.22 K,respectively.The upper and lower critical fields of Nb_(2)TiW are 3.52(2)T and 53.36(2)Oe,respectively,and those of Nb_(2)TiMo are 2.11(2)T and 68.23(3)Oe,respectively.First-principles calculations revealed that the d electrons of Nb,Ti,andMo orW are the dominant contributors to the density of states near the Fermi level.Specific heat measurement results indicated that Nb_(2)TiW and Nb_(2)TMo exhibit BCS full-gap s-wave superconductivity.
基金supported by the National Natural Science Foundation of China(GrantNo.12072231).
文摘Hypersonic boundary-layer receptivity to freestream entropy and vorticity waves is investigated using direct numerical simula-tions for a Mach 6 flow over a 5.08 mm nose radius cone.Two frequencies of 33 kHz and 150 kHz are considered to be rep-resentative of the first and second instability modes,respectively.For the first mode,wall pressure fluctuations for both entropy and vorticity wave cases exhibit a strong modulation yet without a growing trend,indicating that the first mode is not generated despite its instability predicted by linear stability theory.The potential reason for this is the absence of postshock slow acoustic waves capable of synchronizing with the first mode.By contrast,for the second mode,a typical three-stage boundary-layer response is observed,consistent with that to slow acoustic waves studied previously.Furthermore,the postshock disturbances outside the boundary layer can be decomposed into the entropy(density/temperature fluctuations)and vorticity components(ve-locity fluctuations),and the latter is shown to play a leading role in generating the second mode,even for the case with entropy waves where the density/temperature fluctuations dominate the postshock regions.