Doping engineering is an effective strategy for graphitic carbon nitride(g-C_(3)N_(4))to improve its photocat-alytic hydrogen evolution reaction(HER)performance.In this work,a novel nitrogen and sulfur co-doped g-C_(3...Doping engineering is an effective strategy for graphitic carbon nitride(g-C_(3)N_(4))to improve its photocat-alytic hydrogen evolution reaction(HER)performance.In this work,a novel nitrogen and sulfur co-doped g-C_(3)N_(4)(N,S-g-C_(3)N_(4))is elaborately designed on the basis of theoretical predictions of first-principle density functional theory(DFT).The calculated Gibbs free energy of adsorbed hydrogen(ΔGH∗)for N,S-g-C_(3)N_(4) at the N-doping active sites is extremely close to zero(0.01 eV).Inspired by the theoretical predictions,the N,S-g-C_(3)N_(4) is successfully fabricated through ammonia-rich pyrolysis synthesis strategy,in which ammonia is in-situ obtained by pyrolyzing melamine.Subsequent characterizations indicate that the N,S-g-C_(3)N_(4) possesses high specific surface area,outstanding light utilization,good hydrophilicity,and efficient carrier transfer efficiency.Consequently,the N,S-g-C_(3)N_(4) displays an extremely high H2 evolution rate of 8269.9μmol g−1 h−1,achieves an apparent quantum efficiency(AQE)of 3.24%,and also possesses outsatnding durability.Theoretical calculations further demonstrate that N and S dopants can not only introduce doping energy level to reduce the band gap,but also induce charge redistribution to facilitate hydrogen adsorption,thus promoting the photocatalytic HER process.Moreover,femtosecond transient absorption(fs-TA)spectroscopy further corroborates the efficient photogenerated carrier transport of N,S-g-C_(3)N_(4).This research highlights a promising and reliable strategy to achieve superior photocatalytic activity,and exhibits significant guidance for precise designing high-efficiency photocatalysts.展开更多
Parkinson's disease(PD)is one of the most common neurodegenerative diseases.The loss of dopaminergic(DAergic)neurons in the substantia nigra and the decrease of dopamine(DA)levels accelerate the process of PD.L-Er...Parkinson's disease(PD)is one of the most common neurodegenerative diseases.The loss of dopaminergic(DAergic)neurons in the substantia nigra and the decrease of dopamine(DA)levels accelerate the process of PD.L-Ergothioneine(EGT)is a natural antioxidant derived from microorganisms,especially in edible mushrooms.EGT can penetrate blood-brain barrier and its levels are significantly decreased in the plasma of PD patients.Therefore,we speculated that EGT could ameliorate PD,and determined its effect on PD development by using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mouse models and neurotoxin 1-methyl-4-phenylpyridinium(MPP^(+))-induced cell models.Our results show that EGT alleviated MPTP-induced behavioral dysfunction in mice.Mechanistically,we innovatively revealed that EGT was a key regulator of DJ-1.EGT restored DA levels by activating the DJ-1-nuclear receptor-related factor 1(Nurr1)axis.Furthermore,it reduced reactive oxygen species(ROS)levels by regulating the DJ-1-nuclear factor erythroid 2-related factor 2(Nrf2)pathway,which inhibited oxidative stress-induced DAergic neuronal apoptosis.Combined treatment with DJ-1-si RNA transfection revealed that blocking DJ-1 reversed EGT upregulated Nurr1 and Nrf2 expression in the nucleus,which significantly decreased the benefits of EGT.Taken together,our study suggests that EGT can ameliorate PD and be considered as a strategy for PD treatment.展开更多
Exploiting high-performance electrolyte holds the key for realization practical application of rechargeable magnesium batteries(RMBs).Herein,a new non-nucleophilic mononuclear electrolyte was developed and its electro...Exploiting high-performance electrolyte holds the key for realization practical application of rechargeable magnesium batteries(RMBs).Herein,a new non-nucleophilic mononuclear electrolyte was developed and its electrochemical active species was identified as[Mg(DME)_(3)][GaCl_(4)]_(2) through single-crystal X-ray diffraction analysis.The as-synthesized Mg(GaCl_(4))_(2)-IL-DME electrolyte could achieve a high ionic conductivity(9.85 m S cm^(-1)),good anodic stability(2.9 V vs.Mg/Mg^(2+)),and highly reversible Mg plating/stripping.The remarkable electrochemical performance should be attributed to the in-situ formation of Mg^(2+)-conducting Ga_(5)Mg_(2)alloy layer at the Mg/electrolyte interface during electrochemical cycling,which not only efficiently protects the Mg anode from passivation,but also allows for rapid Mg-ion transport.Significantly,the Mg(GaCl_(4))_(2)-IL-DME electrolyte showed excellent compatibility with both conversion and intercalation cathodes.The Mg/S batteries with Mg(Ga Cl_(4))_(2)-IL-DME electrolyte and KB/S cathode showed a high specific capacity of 839 m Ah g^(-1)after 50 cycles at 0.1 C with the Coulombic efficiency of~100%.Moreover,the assembled Mg|Mo_6 S_8 batteries delivered a reversible discharge capacity of 85 m Ah g^(-1)after 120 cycles at 0.2 C.This work provides a universal electrolyte for the realization of high-performance and practical RMBs,especially Mg/S batteries.展开更多
The industrial implementation of Solar-driven photocatalysis is hampered by inefficient charge separation,poor reusability and hard retrieval of powdery catalysts.To conquer these drawbacks,a self-floating S-scheme Bi...The industrial implementation of Solar-driven photocatalysis is hampered by inefficient charge separation,poor reusability and hard retrieval of powdery catalysts.To conquer these drawbacks,a self-floating S-scheme Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)/carbon fiber cloth(BB/PN/CC)composed of carbon fibers(CC)as the core and Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)(BB/PN)nanosheets as the shell was constructed as a competent,recyclable cloth-shaped photocatalyst for safe and efficient degradation of aquacultural antibiotics.The BB/PN/CC fabric achieves an exceptional tetracycline degradation rate constant of 0.0118 min‒1,surpassing CN/CC(0.0015 min^(‒1)),BB/CC(0.0066 min^(‒1))and PN/CC(0.0023 min^(‒1))by 6.9,0.8 and 4.1 folds,respectively.Beyond its catalytic prowess,the photocatalyst’s practical superiority is evident in its effortless recovery and environmental adaptability.The superior catalytic effectiveness stems from the S-scheme configuration,which retains the maximum redox capacities of the constituent BB and PN while enabling efficient spatial detachment of photo-carriers.X-ray photoelectron spectroscopy(XPS),in-situ XPS,and electron paramagnetic resonance analyses corroborate the S-scheme mechanism,revealing electron accumulation on PN and hole retention on BB under illumination.Density functional theory calculations further confirm S-scheme interfacial charge redistribution and internal electric field formation.This study advances the design of macroscopic S-scheme heterojunction photocatalysts for sustainable water purification.展开更多
As a kind of non-destructive testing method,magnetic particle inspection is widely used in the fields of aviation and high-speed rail.The properties of magnetic fluorescent bifunctional composites,such as fluorescence...As a kind of non-destructive testing method,magnetic particle inspection is widely used in the fields of aviation and high-speed rail.The properties of magnetic fluorescent bifunctional composites,such as fluorescence intensity and magnetic properties,have increasing demands in magnetic particle inspection.Rare earth compounds offer potential as novel materials for fluorescent magnetic bifunctional composites due to their excellent optical properties and extremely narrow emission spectra.In this work,the rare earth fluorescent material Y_(2)O_(2)S:Eu^(3+) was synthesized by solid-state reaction method.Fe_(3)O_(4)nanoparticles prepared by hydrothermal method were uniformly coated on the Y_(2)O_(2)S:Eu^(3+) particles through physical adsorption of surfactants.The obtained Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) exhibits dark red color under the ultraviolet light.In additio n,X-ray diffractio n,morphology,photoluminescence and hyste resis loop of Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) were investigated.The luminescence mechanism of Y_(2)O_(2)S:Eu^(3+) is described in detail Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) displays good paramagnetism and has a good controllability under a magnetic field.The magnetic particle inspection of Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) was performed using a 4-pole electromagnet and a test piece shim.The magnetic fluorescent bifunctional composite presented in this work can be applied for non-destructive testing.展开更多
BACKGROUND Genetic factors of chronic intestinal ulcers are increasingly garnering attention.We present a case of chronic intestinal ulcers and bleeding associated with mu-tations of the activin A receptor type II-lik...BACKGROUND Genetic factors of chronic intestinal ulcers are increasingly garnering attention.We present a case of chronic intestinal ulcers and bleeding associated with mu-tations of the activin A receptor type II-like 1(ACVRL1)and phospholipase A2 group IVA(PLA2G4A)genes and review the available relevant literature.CASE SUMMARY A 20-year-old man was admitted to our center with a 6-year history of recurrent abdominal pain,diarrhea,and dark stools.At the onset 6 years ago,the patient had received treatment at a local hospital for abdominal pain persisting for 7 d,under the diagnosis of diffuse peritonitis,acute gangrenous appendicitis with perforation,adhesive intestinal obstruction,and pelvic abscess.The surgical treat-ment included exploratory laparotomy,appendectomy,intestinal adhesiolysis,and pelvic abscess removal.The patient’s condition improved and he was dis-charged.However,the recurrent episodes of abdominal pain and passage of black stools started again one year after discharge.On the basis of these features and results of subsequent colonoscopy,the clinical diagnosis was established as in-flammatory bowel disease(IBD).Accordingly,aminosalicylic acid,immunotherapy,and related symptomatic treatment were administered,but the symptoms of the patient did not improve significantly.Further investigations revealed mutations in the ACVRL1 and PLA2G4A genes.ACVRL1 and PLA2G4A are involved in angiogenesis and coagulation,respectively.This suggests that the chronic intestinal ulcers and bleeding in this case may be linked to mutations in the ACVRL1 and PLA2G4A genes.Oral Kangfuxin liquid was administered to promote healing of the intestinal mucosa and effectively manage clinical symptoms.CONCLUSION Mutations in the ACVRL1 and PLA2G4A genes may be one of the causes of chronic intestinal ulcers and bleeding in IBD.Orally administered Kangfuxin liquid may have therapeutic potential.展开更多
基金supported by the National Natural Science Foun-dation of China(No.62004143)the Key R&D Program of Hubei Province(No.2022BAA084)the Natural Science Foundation of Hubei Province(No.2021CFB133).
文摘Doping engineering is an effective strategy for graphitic carbon nitride(g-C_(3)N_(4))to improve its photocat-alytic hydrogen evolution reaction(HER)performance.In this work,a novel nitrogen and sulfur co-doped g-C_(3)N_(4)(N,S-g-C_(3)N_(4))is elaborately designed on the basis of theoretical predictions of first-principle density functional theory(DFT).The calculated Gibbs free energy of adsorbed hydrogen(ΔGH∗)for N,S-g-C_(3)N_(4) at the N-doping active sites is extremely close to zero(0.01 eV).Inspired by the theoretical predictions,the N,S-g-C_(3)N_(4) is successfully fabricated through ammonia-rich pyrolysis synthesis strategy,in which ammonia is in-situ obtained by pyrolyzing melamine.Subsequent characterizations indicate that the N,S-g-C_(3)N_(4) possesses high specific surface area,outstanding light utilization,good hydrophilicity,and efficient carrier transfer efficiency.Consequently,the N,S-g-C_(3)N_(4) displays an extremely high H2 evolution rate of 8269.9μmol g−1 h−1,achieves an apparent quantum efficiency(AQE)of 3.24%,and also possesses outsatnding durability.Theoretical calculations further demonstrate that N and S dopants can not only introduce doping energy level to reduce the band gap,but also induce charge redistribution to facilitate hydrogen adsorption,thus promoting the photocatalytic HER process.Moreover,femtosecond transient absorption(fs-TA)spectroscopy further corroborates the efficient photogenerated carrier transport of N,S-g-C_(3)N_(4).This research highlights a promising and reliable strategy to achieve superior photocatalytic activity,and exhibits significant guidance for precise designing high-efficiency photocatalysts.
基金supported by the National Natural Science Foundation of China(U22A20272,82173807,82170497)。
文摘Parkinson's disease(PD)is one of the most common neurodegenerative diseases.The loss of dopaminergic(DAergic)neurons in the substantia nigra and the decrease of dopamine(DA)levels accelerate the process of PD.L-Ergothioneine(EGT)is a natural antioxidant derived from microorganisms,especially in edible mushrooms.EGT can penetrate blood-brain barrier and its levels are significantly decreased in the plasma of PD patients.Therefore,we speculated that EGT could ameliorate PD,and determined its effect on PD development by using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mouse models and neurotoxin 1-methyl-4-phenylpyridinium(MPP^(+))-induced cell models.Our results show that EGT alleviated MPTP-induced behavioral dysfunction in mice.Mechanistically,we innovatively revealed that EGT was a key regulator of DJ-1.EGT restored DA levels by activating the DJ-1-nuclear receptor-related factor 1(Nurr1)axis.Furthermore,it reduced reactive oxygen species(ROS)levels by regulating the DJ-1-nuclear factor erythroid 2-related factor 2(Nrf2)pathway,which inhibited oxidative stress-induced DAergic neuronal apoptosis.Combined treatment with DJ-1-si RNA transfection revealed that blocking DJ-1 reversed EGT upregulated Nurr1 and Nrf2 expression in the nucleus,which significantly decreased the benefits of EGT.Taken together,our study suggests that EGT can ameliorate PD and be considered as a strategy for PD treatment.
基金financially supported by National Natural Science Foundation of China(21773291,52303130,62205231,61904118,22002102)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJA210005)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1710)Postgraduate Research&Practice Innovation Program of Suzhou University of Science and Technology(CLKYCX23_06)。
文摘Exploiting high-performance electrolyte holds the key for realization practical application of rechargeable magnesium batteries(RMBs).Herein,a new non-nucleophilic mononuclear electrolyte was developed and its electrochemical active species was identified as[Mg(DME)_(3)][GaCl_(4)]_(2) through single-crystal X-ray diffraction analysis.The as-synthesized Mg(GaCl_(4))_(2)-IL-DME electrolyte could achieve a high ionic conductivity(9.85 m S cm^(-1)),good anodic stability(2.9 V vs.Mg/Mg^(2+)),and highly reversible Mg plating/stripping.The remarkable electrochemical performance should be attributed to the in-situ formation of Mg^(2+)-conducting Ga_(5)Mg_(2)alloy layer at the Mg/electrolyte interface during electrochemical cycling,which not only efficiently protects the Mg anode from passivation,but also allows for rapid Mg-ion transport.Significantly,the Mg(GaCl_(4))_(2)-IL-DME electrolyte showed excellent compatibility with both conversion and intercalation cathodes.The Mg/S batteries with Mg(Ga Cl_(4))_(2)-IL-DME electrolyte and KB/S cathode showed a high specific capacity of 839 m Ah g^(-1)after 50 cycles at 0.1 C with the Coulombic efficiency of~100%.Moreover,the assembled Mg|Mo_6 S_8 batteries delivered a reversible discharge capacity of 85 m Ah g^(-1)after 120 cycles at 0.2 C.This work provides a universal electrolyte for the realization of high-performance and practical RMBs,especially Mg/S batteries.
文摘The industrial implementation of Solar-driven photocatalysis is hampered by inefficient charge separation,poor reusability and hard retrieval of powdery catalysts.To conquer these drawbacks,a self-floating S-scheme Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)/carbon fiber cloth(BB/PN/CC)composed of carbon fibers(CC)as the core and Bi_(4)O_(5)Br_(2)/P-doped C_(3)N_(4)(BB/PN)nanosheets as the shell was constructed as a competent,recyclable cloth-shaped photocatalyst for safe and efficient degradation of aquacultural antibiotics.The BB/PN/CC fabric achieves an exceptional tetracycline degradation rate constant of 0.0118 min‒1,surpassing CN/CC(0.0015 min^(‒1)),BB/CC(0.0066 min^(‒1))and PN/CC(0.0023 min^(‒1))by 6.9,0.8 and 4.1 folds,respectively.Beyond its catalytic prowess,the photocatalyst’s practical superiority is evident in its effortless recovery and environmental adaptability.The superior catalytic effectiveness stems from the S-scheme configuration,which retains the maximum redox capacities of the constituent BB and PN while enabling efficient spatial detachment of photo-carriers.X-ray photoelectron spectroscopy(XPS),in-situ XPS,and electron paramagnetic resonance analyses corroborate the S-scheme mechanism,revealing electron accumulation on PN and hole retention on BB under illumination.Density functional theory calculations further confirm S-scheme interfacial charge redistribution and internal electric field formation.This study advances the design of macroscopic S-scheme heterojunction photocatalysts for sustainable water purification.
基金supported by the National Natural Science Foundation of China (51927810)。
文摘As a kind of non-destructive testing method,magnetic particle inspection is widely used in the fields of aviation and high-speed rail.The properties of magnetic fluorescent bifunctional composites,such as fluorescence intensity and magnetic properties,have increasing demands in magnetic particle inspection.Rare earth compounds offer potential as novel materials for fluorescent magnetic bifunctional composites due to their excellent optical properties and extremely narrow emission spectra.In this work,the rare earth fluorescent material Y_(2)O_(2)S:Eu^(3+) was synthesized by solid-state reaction method.Fe_(3)O_(4)nanoparticles prepared by hydrothermal method were uniformly coated on the Y_(2)O_(2)S:Eu^(3+) particles through physical adsorption of surfactants.The obtained Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) exhibits dark red color under the ultraviolet light.In additio n,X-ray diffractio n,morphology,photoluminescence and hyste resis loop of Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) were investigated.The luminescence mechanism of Y_(2)O_(2)S:Eu^(3+) is described in detail Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) displays good paramagnetism and has a good controllability under a magnetic field.The magnetic particle inspection of Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) was performed using a 4-pole electromagnet and a test piece shim.The magnetic fluorescent bifunctional composite presented in this work can be applied for non-destructive testing.
基金Supported by the Science and Technology Research Foundation of Guizhou Province,No.QKHJC-ZK[2022]YB642Science and Technology Research Foundation of Hubei Province,No.2022BCE030+2 种基金Science and Technology Research Foundation of Zunyi City,No.ZSKH-HZ(2022)344Research Project on Traditional Chinese Medicine and Ethnic Medicine Science and Technology of Guizhou Provincial Administration of Traditional Chinese Medicine,No.QZYY-2023-021Science and Technology Research Foundation of Bijie City,No.BKH[2022]8.
文摘BACKGROUND Genetic factors of chronic intestinal ulcers are increasingly garnering attention.We present a case of chronic intestinal ulcers and bleeding associated with mu-tations of the activin A receptor type II-like 1(ACVRL1)and phospholipase A2 group IVA(PLA2G4A)genes and review the available relevant literature.CASE SUMMARY A 20-year-old man was admitted to our center with a 6-year history of recurrent abdominal pain,diarrhea,and dark stools.At the onset 6 years ago,the patient had received treatment at a local hospital for abdominal pain persisting for 7 d,under the diagnosis of diffuse peritonitis,acute gangrenous appendicitis with perforation,adhesive intestinal obstruction,and pelvic abscess.The surgical treat-ment included exploratory laparotomy,appendectomy,intestinal adhesiolysis,and pelvic abscess removal.The patient’s condition improved and he was dis-charged.However,the recurrent episodes of abdominal pain and passage of black stools started again one year after discharge.On the basis of these features and results of subsequent colonoscopy,the clinical diagnosis was established as in-flammatory bowel disease(IBD).Accordingly,aminosalicylic acid,immunotherapy,and related symptomatic treatment were administered,but the symptoms of the patient did not improve significantly.Further investigations revealed mutations in the ACVRL1 and PLA2G4A genes.ACVRL1 and PLA2G4A are involved in angiogenesis and coagulation,respectively.This suggests that the chronic intestinal ulcers and bleeding in this case may be linked to mutations in the ACVRL1 and PLA2G4A genes.Oral Kangfuxin liquid was administered to promote healing of the intestinal mucosa and effectively manage clinical symptoms.CONCLUSION Mutations in the ACVRL1 and PLA2G4A genes may be one of the causes of chronic intestinal ulcers and bleeding in IBD.Orally administered Kangfuxin liquid may have therapeutic potential.