运用电沉积法在纳米TiO2膜上电沉积分散的Pt微粒制成钛基纳米TiO2-Pt复合膜(nano TiO2-Pt)修饰电极,采用循环伏安法和电解氧化法,研究了复合膜电极的电催化活性以及氧化甘油为甘油醛的过程。结果表明,纳米TiO2为锐钛矿型,Pt纳米粒子...运用电沉积法在纳米TiO2膜上电沉积分散的Pt微粒制成钛基纳米TiO2-Pt复合膜(nano TiO2-Pt)修饰电极,采用循环伏安法和电解氧化法,研究了复合膜电极的电催化活性以及氧化甘油为甘油醛的过程。结果表明,纳米TiO2为锐钛矿型,Pt纳米粒子均匀分散在TiO2多孔膜的表面和内部。复合膜电极在常温常压下对甘油的电化学氧化具有高催化活性和稳定性,在25~30℃下,电流密度为25 m A/cm^2时,电流效率达84%,电解产率达89.6%。展开更多
Using glucose and sucrose as the electron donors,the photocatalytic hydrogen evolution over Pt/TiO2 was investigated.Glucose and sucrose enhance notably the activity for hydrogen generation.The amounts of produced H2 ...Using glucose and sucrose as the electron donors,the photocatalytic hydrogen evolution over Pt/TiO2 was investigated.Glucose and sucrose enhance notably the activity for hydrogen generation.The amounts of produced H2 increase almost proportionally to time within 5 h irradiation in the reaction systems of the two electron donors.The effect of the initial concentration of glucose and sucrose on the reaction rate is consistent with the Langmuir-Hinshelwood kinetic model.After 5 h irradiation,the COD(chemical oxygen demand) in the reaction system of glucose and in that of sucrose decrease by 33.2%,11.4% respectively.The effect of electron donors on the flat-band potential of conduction band of TiO2 electrode was investigated.The flat-band potential of conduction band of TiO2 electrode in the presence of the electron donors shifts negatively,and the shift in the presence of glucose is larger than that in the presence of sucrose due to glucose having a larger adsorption amount on TiO2.展开更多
文摘运用电沉积法在纳米TiO2膜上电沉积分散的Pt微粒制成钛基纳米TiO2-Pt复合膜(nano TiO2-Pt)修饰电极,采用循环伏安法和电解氧化法,研究了复合膜电极的电催化活性以及氧化甘油为甘油醛的过程。结果表明,纳米TiO2为锐钛矿型,Pt纳米粒子均匀分散在TiO2多孔膜的表面和内部。复合膜电极在常温常压下对甘油的电化学氧化具有高催化活性和稳定性,在25~30℃下,电流密度为25 m A/cm^2时,电流效率达84%,电解产率达89.6%。
文摘Using glucose and sucrose as the electron donors,the photocatalytic hydrogen evolution over Pt/TiO2 was investigated.Glucose and sucrose enhance notably the activity for hydrogen generation.The amounts of produced H2 increase almost proportionally to time within 5 h irradiation in the reaction systems of the two electron donors.The effect of the initial concentration of glucose and sucrose on the reaction rate is consistent with the Langmuir-Hinshelwood kinetic model.After 5 h irradiation,the COD(chemical oxygen demand) in the reaction system of glucose and in that of sucrose decrease by 33.2%,11.4% respectively.The effect of electron donors on the flat-band potential of conduction band of TiO2 electrode was investigated.The flat-band potential of conduction band of TiO2 electrode in the presence of the electron donors shifts negatively,and the shift in the presence of glucose is larger than that in the presence of sucrose due to glucose having a larger adsorption amount on TiO2.