TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The ef...TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The effects of support calcination temperature of CoMo/TiOz- NTs catalysts on their catalytic performance were investigated for selective hydrodesulfurization (HDS). The samples were characterized by means of the scanning electron microscopy (SEM), the transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy and H2 temperature-programmed reduction (Hz-TPR). The experimental results revealed that TiOz-NTs support calcined under 500℃ can maintain the nanotubular structure with higher surface area and pore volume. Meanwhile, the obtained supported CoMo/TiO2-NTs catalysts exhibited weak metal-support interaction, more octahedral Mo6+ species and high catalytic performance in selective HDS.展开更多
A novel catalyst,TiO2 nanotubes(TiO2 NTs)composite decorated by CuO and CeO2 particles,was prepared by a simple and cost-effective method.The TiO2 NTs were fabricated by the hydrothermal method,and CuO and CeO2 partic...A novel catalyst,TiO2 nanotubes(TiO2 NTs)composite decorated by CuO and CeO2 particles,was prepared by a simple and cost-effective method.The TiO2 NTs were fabricated by the hydrothermal method,and CuO and CeO2 particles loaded onto TiO2 NTs(CuO/CeO2@TiO2 NTs)were prepared by the water bath heating method.The CuO/CeO2@TiO2 NTs were investigated and characterized by transmission electron microscope(TEM),energy dispersive spectrometer(EDS),photoluminescence(PL),X-ray diffractometer(XRD)and ultraviolet-visible light diffuse reflectance spectrum(UV-Vis DRS).Both the p-n heterojunction formed at the p-CuO and n-TiO2 interfaces and the highly induced electron transfer of CeO2 can greatly promote the separation of electrons-holes.Therefore,CuO/CeO2@TiO2 NTs show enhanced absorption and have potential applications in photocatalysis.展开更多
In the present work, we report on the behavior of synthesized gold nano-particles suspension, incorporated in titanium dioxide nanotube layers (TiO2- NT) and fabricated by electrochemical anodization in 0.4 wt% hydrof...In the present work, we report on the behavior of synthesized gold nano-particles suspension, incorporated in titanium dioxide nanotube layers (TiO2- NT) and fabricated by electrochemical anodization in 0.4 wt% hydrofluoric acid solution and we study its photocatalytic response. Gold nanoparticles were characterized using Transmission electron microscopy and X-ray diffraction. Scanning electron microscopy was used to study the morphology of TiO2 nanotube layers doped by gold nanoparticles. Boosted photocatalytic performances on the degradation of an azo dye were obtained by using TiO2 nanotube layers doped by gold nanoparticles (Au/TiO2-NT), compared to undoped TiO2 nanotube layer (TiO2-NT) catalysts. Under UV irradiation, this new nanomaterial, with noble metal-semi conductor heterojunction (Au/ TiO2-NT) exhibits a synergetic effect in accelerating the electron transfert, resulting in an enhanced photoactivity recorded in the kinetics of degradation of Acid Orange 7 (AO7). Chronoamperometry was used to highlight higher photocurrent produced by gold-titania interface submited to UV irradiation.展开更多
文摘TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The effects of support calcination temperature of CoMo/TiOz- NTs catalysts on their catalytic performance were investigated for selective hydrodesulfurization (HDS). The samples were characterized by means of the scanning electron microscopy (SEM), the transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy and H2 temperature-programmed reduction (Hz-TPR). The experimental results revealed that TiOz-NTs support calcined under 500℃ can maintain the nanotubular structure with higher surface area and pore volume. Meanwhile, the obtained supported CoMo/TiO2-NTs catalysts exhibited weak metal-support interaction, more octahedral Mo6+ species and high catalytic performance in selective HDS.
基金National Natural Science Foundation of China(No.11372205)
文摘A novel catalyst,TiO2 nanotubes(TiO2 NTs)composite decorated by CuO and CeO2 particles,was prepared by a simple and cost-effective method.The TiO2 NTs were fabricated by the hydrothermal method,and CuO and CeO2 particles loaded onto TiO2 NTs(CuO/CeO2@TiO2 NTs)were prepared by the water bath heating method.The CuO/CeO2@TiO2 NTs were investigated and characterized by transmission electron microscope(TEM),energy dispersive spectrometer(EDS),photoluminescence(PL),X-ray diffractometer(XRD)and ultraviolet-visible light diffuse reflectance spectrum(UV-Vis DRS).Both the p-n heterojunction formed at the p-CuO and n-TiO2 interfaces and the highly induced electron transfer of CeO2 can greatly promote the separation of electrons-holes.Therefore,CuO/CeO2@TiO2 NTs show enhanced absorption and have potential applications in photocatalysis.
文摘In the present work, we report on the behavior of synthesized gold nano-particles suspension, incorporated in titanium dioxide nanotube layers (TiO2- NT) and fabricated by electrochemical anodization in 0.4 wt% hydrofluoric acid solution and we study its photocatalytic response. Gold nanoparticles were characterized using Transmission electron microscopy and X-ray diffraction. Scanning electron microscopy was used to study the morphology of TiO2 nanotube layers doped by gold nanoparticles. Boosted photocatalytic performances on the degradation of an azo dye were obtained by using TiO2 nanotube layers doped by gold nanoparticles (Au/TiO2-NT), compared to undoped TiO2 nanotube layer (TiO2-NT) catalysts. Under UV irradiation, this new nanomaterial, with noble metal-semi conductor heterojunction (Au/ TiO2-NT) exhibits a synergetic effect in accelerating the electron transfert, resulting in an enhanced photoactivity recorded in the kinetics of degradation of Acid Orange 7 (AO7). Chronoamperometry was used to highlight higher photocurrent produced by gold-titania interface submited to UV irradiation.